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SUMMARY 

 

Atherosclerosis occurs preferentially at branches and curves in arteries exposed to 

disturbed flow while sparing straight portions of arteries exposed to undisturbed flow.  In 

vivo and in vitro studies have implicated NADPH oxidases in atherosclerosis and 

hypertension.  Shear stress can induce reactive oxygen species production in endothelial 

cells from a variety of sources, including NADPH oxidases.  Here, we examined the 

hypothesis that unidirectional laminar shear (LS) and oscillatory shear (OS) would 

differentially regulate gene expression profiles in NADPH oxidase-dependent and -

independent manners, and that these genes would provide novel molecular targets in 

understanding endothelial cell biology and vascular disease.   

The p47phox subunit of the NADPH oxidase can be an important regulator of 

certain Nox isoforms, including Nox1 and Nox2 which may be responsible for shear-

induced superoxide production.  In order to isolate p47phox-dependent shear responses, 

we took advantage of the p47phox-/- transgenic mouse model which lacks a functional 

p47phox subunit.  We developed a method to isolate murine aortic endothelial cells using 

an enzymatic digestion technique.  These cells expressed characteristic endothelial 

markers, including VE-cadherin, PECAM1, and eNOS, and aligned in the direction of 

flow.  We successfully isolated primary murine aortic endothelial cells from both wild-

type C57BL/6 mice (MAE-WT) and p47phox-/- mice (MAE-p47).  Furthermore, we 

established an immortalized cell line from each of these cell types, iMAE-WT and 

iMAE-p47.   

We carried out microarray studies using Affymetrix Mouse Genome 430 2.0 

Arrays (39,000+ transcripts) on MAE-WT and MAE-p47 that were exposed to 

atheroprotective LS or atherogenic OS for 24 hours.  In comparison to LS, OS 

significantly changed the expression of 187 and 298 genes in MAE-WT and MAE-p47, 

respectively.  Of those, 23 genes showed similar gene expression patterns in both cell 
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types while 462 genes showed different gene expression patterns in the two cell types, 

demonstrating a considerable role for p47phox-based NADPH oxidases in shear-

dependent gene expression.  Changes in expression of several genes, including Kruppel-

like factor 2 (Klf2), endothelial nitric oxide synthase (eNOS), angiopoietin 2 (Ang2), 

junctional adhesion molecule 2 (Jam2), bone morphogenic receptor type II (Bmpr2), and 

bone morphogenic protein 4 (Bmp4) were confirmed by quantitative PCR and/or 

immunoblotting using both primary cells and immortalized cells.  Of these genes, our 

data suggest that Jam2, Bmpr2, and Bmp4 may be shear-sensitive in a p47phox-

dependent manner.  Taken together, our studies have identified a set of shear- and 

p47phox-sensitive genes, including unexpected and novel targets, which may play critical  

roles in vascular cell biology and pathobiology.
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1 

CHAPTER ONE:  INTRODUCTION 

 

Cardiovascular Disease 

 

The most significant cause of morbidity and mortality in developed nations is 

cardiovascular disease (CVD).  In the United States, approximately one in three adults 

has some form of CVD which accounted for over a third of all deaths in 2005.  It is 

estimated that the total cost of CVD will be almost $450 billion this year alone. [1]  The 

incidence and subsequent cost of CVD is expected to only increase given the rapid rise of 

risk factors such as diabetes and obesity. [2, 3]  Clearly, it is worthwhile to find ways to 

prevent and manage these diseases. 

Cardiovascular disease encompasses conditions such as hypertension, coronary 

heart disease, heart failure, and stroke.  In some cases, there is a genetic predisposition to 

developing CVD, yet there are also other potentially modifiable risk factors that 

contribute to its incidence.  These include cigarette smoking, high cholesterol levels, 

hypertension, diabetes, abdominal obesity, a sedentary lifestyle, a diet poor in fruits and 

vegetables, alcohol overconsumption, and psychosocial indices. [1] 

Hypertension, the most prevalent form of CVD, is associated with and perhaps 

exacerbates other forms of CVD.  However, while not as prevalent, coronary heart 

disease accounted for half of all deaths from CVD in 2004 and is presently the single 

most common cause of death in the United States.  Stroke is the next most common cause 

of death from CVD, accounting for 17% of all deaths from CVD in 2004. [1]  The 

underlying disease process that coronary heart disease and stroke share is atherosclerosis.   

 Atherosclerosis is a chronic progressive disease that occurs principally in large- 

and medium-sized arteries.  The disease may be present throughout one’s lifetime.  The 

earliest type of atherosclerotic lesion – the fatty streak – is common in young children. 

[4]  Over time, the disease results in the buildup of a plaque which may restrict blood 
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flow or even occlude the blood vessel entirely, resulting in an infarction of the organ the 

vessel supplies.  When this occurs in a coronary artery supplying the heart, it is known as 

myocardial infarction or, more commonly, heart attack.  When this occurs in any of the 

arteries supplying the brain, it is known as ischemic stroke or simply stroke. 

 

Basic Cardiovascular Anatomy 

 

The cardiovascular system is critically responsible for transporting nutrients and 

removing gaseous wastes from the body.  It consists of the heart, blood vessels, and 

blood.  Blood vessels include arteries, capillaries, and veins.  These different types of 

blood vessels differ not only with respect to size and location but also anatomical 

composition and function.  In the systemic circulation, arteries transport oxygenated 

blood away from the heart to the peripheral regions of the body.  Starting from the heart, 

the first of these arteries, including the aorta and its branches, are known as conduit 

arteries.  They experience high cyclical pressures and, in order to accommodate this, have 

large diameters and thick, elastin-rich walls.  Moving away from the heart, these arteries 

progressively divide into smaller arteries with proportionately more muscular walls.  

Capillaries are composed of single layers of cells to help facilitate the exchange of 

nutrients and waste products.  Veins transport deoxygenated blood back towards the heart 

for gas exchange in the pulmonary circulation.  They experience low pressures and as a 

result have thin walls and are typically more compliant than arteries.    

Arteries are composed of three coaxial layers: the intima, the media, and the 

adventitia. The intima is the innermost layer exposed to blood and is a monolayer of 

endothelial cells – the endothelium – atop a single basement membrane. The endothelium 

serves many homeostatic roles, including regulation of vessel tone, tissue perfusion, 

vascular permeability, blood fluidity, anticoagulant activity, and inflammatory responses. 

[5]  The media is the layer underlying the intima and is comprised of mostly smooth 
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muscle cells embedded within layers of elastic laminae. These smooth muscle cells are 

responsible for translating signals from the endothelium into a contraction-relaxation 

response. The adventitia is the outermost layer made of connective tissue, elastin, and 

collagen that forms a tough, protective covering. It also often houses a vasa vasorum, a 

vessel bed that supplies larger vessels with nutrients as well as a nervous supply. 

 

Atherosclerosis 

 

Atherosclerosis is now recognized as an inflammatory disease. [6]  The vascular 

response-to-injury theory proposes that endothelial dysfunction (or “injury”) is the first 

step in the disease process.  Repetitive insults over time cause the disease to progress. [7]  

Endothelial dysfunction may be caused by hypercholesterolemia; free radicals from 

smoking, hypertension, or diabetes; hyperhomocysteinemia; hyperuricemia; infectious 

microorganisms; or combinations of these and other factors.  Whatever the cause, the 

initial changes appear to occur in the endothelium, increasing its adhesiveness and 

permeability and favoring a procoagulant state.  These changes include, for example, 

upregulation of adhesion molecules such as e-selectin, intercellular adhesion molecule 

(ICAM), and vascular cell adhesion molecule (VCAM). These adhesion molecules act in 

concert with chemotactic molecules such as MCP-1 or modified (oxidized) LDL to 

encourage migration of monocytes into the subendothelium. Once below the 

endothelium, these monocytes, now termed macrophages, take up modified LDL as well 

as modify LDL even further. With increased accumulation of lipids, the cells become 

“foam cells”. T-cells also migrate to the subendothelium and amplify the inflammatory 

response. Together, foam cells and T-cells comprise an early fatty streak. Migration of 

smooth muscle cells from the media soon follows. As the process continues, the fatty 

streak progresses to an intermediate and then to an advanced lesion, tending to form a 

fibrous cap that covers a mixture of immune cells, lipid, and debris, or a necrotic core. [6]  
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Such lesions thicken the vessel wall, but up to a point the lumen remains patent due to 

gradual vessel dilation and remodeling, an observation known as the Glagov 

phenomenon. [8]  However, this compensation is limited.  Eventually the lesion will 

restrict the flow of blood.  Advanced lesions with fibrous caps are often vulnerable to 

rupture or ulceration which can rapidly lead to thrombosis and occlusion of a downstream 

artery, if not the native artery itself. [6] 

 

Hemodynamics 

  

 Scientists observed several decades ago that atherosclerotic lesions developed in a 

specific pattern within the vascular tree.  Lesions were found, for instance, in the 

coronary and carotid arteries and in the lower abdominal aorta, all areas where the vessels 

curve, bifurcate, or branch. [9, 10]  This suggested that a mechanical factor, specifically 

the hemodynamic environment, played a critical role in atherogenesis.  Both flow 

characteristics and vessel response to flow have been intensely investigated since these 

initial observations were made. 

The flow of blood through the branched arterial vasculature is pulsatile due to its 

pump-driven nature.  As such, it generates various types of forces on the vessel wall, 

illustrated in Figure 1.1. [11]  Hydrostatic pressure is the normal force exerted on the 

vessel wall due to the pressure of the blood and results in a compressive stress.  Changes 

in pressure during the cardiac cycle cause the vessel wall to stretch, which results in 

cyclic circumferential stress on the vessel wall.  Fluid shear stress is the tractive, 

tangential force produced by the blood passing along the luminal surface of the 

endothelium. [12]   

We sometimes can model blood flow as a simple laminar flow in a circular 

cylindrical tube.  We assume that blood is an incompressible Newtonian fluid, the flow is 

well-developed, and there is a so-called “no slip” condition at the boundary.  From these 
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conditions, we can obtain a parabolic velocity profile – the famous Hagen-Poiseuille flow 

– as shown in Figure 1.2.  From this solution, we can also obtain the rate of flow Q 

through a tube, which is the Poiseuille formula. [12]  

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.1.   Forces acting on the vessel wall.  The pump-driven nature of blood flow 
results in  forces that result in cyclic circumferential stress, compressive stress, and fluid 
shear stress on the elastic vessel wall.   

 
 
 
 
 
 
 
 

 

 

Figure 1.2.  Hagen-Poiseuille velocity profile in a circular cylinder. 
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While this model is a convenient way to understand the conceptual relationship between 

blood flow, properties of blood (viscosity), and vessel size, blood flow patterns can vary 

in complexity throughout the vasculature.  There are relatively uniform, well developed 

laminar patterns that occur in the unbranched portions of medium-sized arteries.  There 

are complex, disturbed flow patterns at bifurcations, branch points, and significant curves 

in the vasculature. These patterns involve regions of flow separation, recirculation, and 

reattachment that generate oscillatory wall shear stress. [13]  

The importance of flow, and particularly shear stress, in vascular pathophysiology 

is shown by the focal development of atherosclerosis in hemodynamically defined areas 

of the vasculature. Regions of branches, curves, and bifurcations in the arterial tree that 

experience disturbed flow or unsteady, oscillatory shear stress, typically ranging from ±5 

dynes/cm2 (± indicating a change in flow direction), are prone to atherosclerotic lesion 

development. [6]  In contrast, regions of straight arteries that experience steady, 

unidirectional shear stress, typically on the order of 15 dynes/cm2, are protected from 

early lesion development. [6, 14] 

 

Shear Stress and Endothelial Cells 

 

The endothelium forms a dynamic interface between the blood and the underlying 

vessel wall that responds to and transduces both humoral and biomechanical stimuli.  It is 

well established that differences in local hemodynamic environments result in 

phenotypically distinct endothelial cells.  Under steady, unidirectional or pulsatile shear 

stress, endothelial cells elongate and align in the direction of flow.  This has been 

demonstrated both in vivo and in vitro. [5, 15-17]  This promotes an atheroprotective 

phenotype where nitric oxide (NO), a vasodilator, and other atheroprotective molecules 

are expressed.  In contrast, under oscillatory shear stress, endothelial cells retain a 
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“cobblestone” appearance.   This promotes an an atherogenic phenotype where apoptotic 

signals and inflammatory cell adhesion molecules are expressed. 

How endothelial cells sense and interpret a mechanical force such as shear stress 

is still under debate.  The simplest model of mechanotransduction suggests that it occurs 

when a shear-sensitive receptor is stimulated and the biochemical signal emanates from 

that point.  A more complex, decentralized model suggests that there are multiple types of 

mechanoreceptors distributed throughout cell, integrated via the cytoskeleton.  When an 

input is received, the signal is transduced to other mechanosensors as well, leading to a 

biochemical response from many locations having an integrated, cumulative effect on the 

cell. [5]  Proposed mechanosensors include integrins, adherens junctions, potassium 

channels, receptor tyrosine kinases, and caveolae. [5, 18-22]  More recently, a group 

identified a mechanosensory complex upstream of previously identified integrin-

mediated response.  This complex is comprised of VEGF receptor 2 (VEGFR2), 

PECAM-1, and VE-cadherin. [23] 

 

Reactive Oxygen Species 

 

Reactive oxygen species (ROS) include oxygen ions, free radicals, and peroxides.  

They are highly reactive due to the presence of unpaired valence electrons.  ROS result 

from the sequential reduction of molecular oxygen.  The first one-electron reduction 

produces superoxide (O2
.-).  This product can be reduced again to yield hydrogen 

peroxide (H2O2) which can, in turn, be reduced to a hydroxyl radical (OH.-).  Each of 

these intermediate radicals can react with a number of other molecules to yield yet more 

radicals.  For example, while superoxide reacts with superoxide dismutase (SOD) to yield 

hydrogen peroxide, it can also react with nitric oxide to form peroxynitrite (ONOO-).  In 

fact, it is reported that NO and O2
.- react at a three-fold greater rate than the rate of 

reaction between SOD and O2
.-. [24] 
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  ROS are byproducts of normal metabolism and have important functions in cell 

signaling.  Under physiologic conditions, the cell’s production of ROS is balanced by 

antioxidant processes.  These processes include ROS scavenging by molecules such as 

ascorbate or glutathione or enzymatic degradation by enzymes such as superoxide 

dismutase, catalase, and glutathione peroxidase. [25]  When this equilibrium is disturbed 

and ROS dominate, oxidative stress ensues.  Oxidative stress plays a significant role in 

not only cardiovascular disease but other disorders including diabetes mellitus, 

neurologic diseases such as Alzheimer’s or Parkinson’s diseases, and cancer, among 

others.  With regard to cardiovascular disease, ROS are important mediators of 

hypertension, vessel remodeling after angioplasty, atherosclerosis, myocardial infarction, 

and ischemic stroke. 

 

Reactive Oxygen Species in Endothelial Cells 

 

Endothelial cells are able to generate ROS which at moderate levels have several 

physiological roles, including acute and chronic oxygen sensing, regulation of vessel 

tone, and cell migration and proliferation during development or wound healing.  An 

excess of endothelial ROS, however, also has pathological roles due to their cytotoxic 

and mutagenic properties. They have been shown to be involved in endothelial 

dysfunction, inflammatory activation, tissue injury, and apoptosis.  Potential sources of 

endothelial ROS are mitochondrial respiration (via the electron transport chain), 

lipoxygenase, cyclooxygenase, cytochrome p450s, xanthine oxidoreductase (XOR), 

NADH/NADPH oxidases, uncoupled NO synthase (NOS), and peroxidases. [26]  Three 

of these sources have been studied extensively: XOR, uncoupled NOS, and NADPH 

oxidase.  We will briefly review the current understanding of XOR and uncoupled NOS 

before moving on to more closely examine the NADPH oxidase. 
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Xanthine Oxidoreductase 

 The enzyme xanthine oxidoreductase has two interconvertible forms, xanthine 

dehydrogenase (XDH) and xanthine oxidase (XO).  XDH is the dominant form in vivo.  

Both forms catalyze the oxidation of hypoxanthine to xanthine as well as the oxidation of 

xanthine to uric acid, the final two reactions in the purine degradation pathway.  

However, XDH can reduce either NAD+ or oxygen whereas XO can reduce only oxygen.  

Since XDH has a greater affinity for NAD+, generation of O2
.- is limited when there is 

ample NAD+.  However, when NAD+ is converted to NADH and NAD+ levels are low, 

XDH can act as an NADH oxidase, generating O2
.-. [27] 

 XOR-generated ROS are implicated in tissue structural damage and cell signaling 

interference and can contribute significantly to endothelial dysfunction in cardiovascular 

disease. [27, 28]  As such, it may play a role in hypertension, hypercholesterolemia, heart 

failure, and atherosclerosis. [27] 

 

Uncoupled NO Synthase 

The enzyme endothelial nitric oxide synthase (eNOS) can become a source of 

ROS, as demonstrated in endothelium exposed to oxidant or hemodynamic stresses. [29-

31]  Active eNOS is a homodimer that converts L-arginine to L-citrulline and nitric oxide 

(NO). When exposed to oxidant stress, particularly the radical peroxynitrite (ONOO–), or 

when deprived of its reducing cofactor tetrahydrobiopterin (BH4), eNOS uncouples to a 

monomeric form and generates O2
.– rather than NO [30], simultaneously increasing 

oxidative stress and decreasing NO bioavailability.  Uncoupled eNOS is considered a 

prominent source of endothelial ROS in hypertension, diabetes, hypercholesterolemia, 

and atherosclerosis. [29, 32] 
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NADPH Oxidase 

The NADPH oxidase was first identified in the neutrophil [33] and has since been 

studied in great detail.  In this particular setting, the enzyme generates ROS as its primary 

function in order to support the cell’s respiratory burst-dependent antimicrobial activity.  

While many other NOX family members have been identified, the phagocytic NADPH 

oxidase is the prototypical NADPH oxidase; it is useful to discuss this enzyme first.  

As shown in Figure 1.3, the phagocytic NADPH oxidase consists of two 

membrane-bound subunits, gp91phox (now known as Nox2) and p22phox, and several 

cytosolic subunits, including p47phox, p67phox, p40phox, and the small GTPase Rac.  

Activation is thought to be triggered by phosphorylation of p47phox which leads to 

conformational changes that allow its interaction with p22phox.  Furthermore, it is 

thought that p47phox organizes the translocation of other cytosolic factors, and so it is 

known as an “organizer subunit.”  The translocation of p47phox to the membrane brings 

p67phox, an “activator subunit,” into contact with Nox2 and also brings p40phox to the 

complex.  Finally, Rac joins the complex, first interacting with Nox2 and then with 

p67phox.  Once assembly is complete, the enzyme is active and Nox2-containing vesicles 

fuse with plasma membrane so that it can generate superoxide in the extracellular space.   

Endothelial cells and other nonphagocytic cells can constitutively express 

superoxide-generating enzymes analogous to the neutrophil NADPH oxidase.  Several 

isoforms of gp91phox have been identified to date – Nox1 through Nox5 and Duox1 and 

Duox2.  Nox1, Nox2, Nox4, and Nox5 have been identified in human endothelial cells.  

There are also homologs to some of the cytosolic components of the NADPH oxidase.  

NoxO1 is known to be a p47phox homolog and NoxA1 is a p67phox homolog.   
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Figure 1.3.  The neutrophil NADPH oxidase.  The neutrophil NADPH oxidase consists 
of membrane-bound subunits, including gp91phox (Nox2) and p22phox, and cytosolic 
subunits, including p40phox, p67phox, p47phox, and rac.  When activated, the cytosolic 
subunits join the membrane-bound proteins to form an complex that generates 
superoxide. 

 

Each of the Nox isoforms appears to have tissue- and cell-specific expression and 

have different and possibly plastic requirements for cytosolic subunits.  Nox1 is 

dependent on cytosolic subunits.  At first, it was thought to be dependent on NoxO1 and 

NoxA1.  However, in transfected cells, Nox1 was able to use the p47phox and p67phox 

subunits instead.  In addition, Nox1 requires the membrane-bound subunit p22phox.  

Nox4 is a more distantly related Nox enzyme.  While its activity is dependent on 

p22phox, it does not require any cytosolic subunits, though its requirement for Rac is 

debated.  It may be constitutively active in many cell types, including endothelial cells.   

The endothelial NADPH oxidase functions in a similar manner to the phagocytic 

NADPH oxidase, yet with some important differences. A substantial proportion of the 

superoxide it generates is intracellular instead of extracellular.  It continuously generates 

a low basal level of superoxide.  A substantial proportion of subunit expression and 

functional activity, at least in cultured endothelial cells, is intracellular and not plasma 

membrane bound.  Furthermore, a large proportion of subunits in unstimulated cells 

exists in fully preassembled and functional ROS-generating complexes which are 
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associated with the intracellular cytoskeleton. [26]  Additionally, p47phox in endothelial 

cells plays an essential role in activation of NADPH oxidase and superoxide production. 

[34, 35]  

 

NADPH Oxidase:  The p47phox Subunit 

 

Two Nox organizer subunits of the NADPH oxidase have been identified:  

NoxO1 and p47phox (also known as NoxO2).  For our purposes, we will focus largely on 

the p47phox subunit.  The human p47phox gene is located on chromosome 7.  To our 

knowledge, no splice variants of this gene exist.  The gene’s protein product is cytosolic 

and not glycosylated. [36]  Approximately one-third of all cases of chronic 

granulomatous disease (CGD), a form of primary immunodeficiency, are caused by 

mutations in the p47phox gene. [37]   

p47phox has several functional domains.  It has a phox (PX) domain that interacts 

with membrane phospholipids.  It has two Src homology 3 (SH3) domains that can 

interact with proline-rich regions in the carboxy-terminal of p22phox.  p47phox also has 

an autoinhibitory region (AIR) that prevents interaction of the protein until it is 

phosphorylated and undergoes a conformational change.  Finally, it has a carboxy-

terminal proline-rich region that can interact with the SH3 domains in p67phox. [36] 

The p47phox subunit, in particular, is thought to have a prominent role in ROS-

mediated atherosclerotic development.  Marschall Runge’s group showed that p47phox is 

required for atherosclerotic lesion progression in an atherogenic mouse model.  In this 

report, ApoE-/-/p47phox-/- mice had less total aortic lesion area than the ApoE-/- mice had. 

Furthermore, this same group isolated smooth muscle cells from wild-type, p47phox-/-, 

and gp91phox-/- mice, and showed that only the p47phox-/- cells had diminished superoxide 

production and decreased response to growth factors, emphasizing the role of the subunit 

itself and not the Nox isoform. [38]  Other groups have reported conflicting results. [39]  
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However, Runge’s group published an additional report with this model, indicating that 

superoxide derived from both monocytes and macrophages as well as cells within the 

vessel wall was critical in atherosclerotic lesion development, again demonstrating the 

role of the p47phox subunit. [40] 

 

ROS and Hemodynamic Shear Stress 

 

Various types of shear can differentially induce the formation of reactive oxygen 

species by the endothelium. [41]  When EC are exposed to arterial levels of 

unidirectional steady laminar shear stress, there is a transient increase in superoxide 

production that peaks at about one hour and then returns to baseline within hours after 

that. [41, 42]  The transient increase in superoxide production is most likely due to the 

temporal gradient in shear stress seen at the onset of flow.  In contrast, when EC are 

exposed to oscillatory shear stress, there is a sustained increase in superoxide production 

compared to static or steady laminar controls. [41]  

Steady laminar flow activates transcription driven by the antioxidant response 

element (ARE) and increases expression of ARE-regulated genes that protect against 

oxidative damage, including NADPH:quinine oxidoreductase 1 (NQO1) and heme 

oxygenase 1 (HO-1). [43]  The transcription factor that binds to the ARE when activated 

by oxidative stresses is NF-E2-related factor 2 (Nrf2).  Oscillatory flow inhibits Nrf2 

binding to the ARE and thus decreases expression of antioxidant genes. [44] 

The NADPH oxidase is involved in shear-mediated ROS production. [45, 46]  

Oscillatory shear stress has been shown to upregulate NADPH oxidase subunits including 

Nox1, Nox2, and Nox4. [42, 47]  Furthermore, oscillatory shear stress increased NADH-

dependent oxidase activity in HUVEC homogenates. [41]  In particular, the p47phox 

subunit, possibly acting in coordination with Nox1, has been suggested to play a critical 

role in shear-mediated ROS production.  A study by Castier et al. used transgenic animal 
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models to investigate vascular remodeling.  This group found that shear stress induces 

vascular NADPH oxidase comprising p47phox but not Nox2.  The ROS produced by this 

interacts with NO to produce peroxynitrite which affected downstream events such as 

MMP activation and vessel remodeling. [48]   

 

Experimental Models 

 

In Vitro Flow Models 

To investigate the effects of hemodynamic shear stress on endothelial cells, 

several in vitro devices have been developed and characterized over the past three 

decades.  These include the parallel-plate flow chamber  as well as several modifications 

of a cone-and-plate viscometer. [49, 50] 

The parallel-plate flow chamber was first designed to study the effects of flow on 

endothelial cells by Frangos and colleagues in 1985. [49]  Since that time, many 

modifications have been made to this system in order to impart varying and complex flow 

profiles.  The basic system consists of two critically spaced plates, between which fluid is 

driven by a pressure gradient.  Cells are cultured on the inner surfaces of the plates and 

are subjected to a dragging force from the fluid moving between the plates.  Overlooking 

the small areas affected by edge effects, the flow can be represented by plane Poiseuille 

flow.  The shear stress is constant over the plate and can be calculated as follows where µ 

is dynamic viscosity, Q is the flow rate, b is the channel width, and h is the channel 

height. 

2

6
bh

Qµτ =  

An alternative to the parallel-plate flow chamber is the cone-and-plate system.  

This is essentially a rotational viscometer.  It was first described and applied to biological 

systems in the early 1980’s. [50]  As illustrated in Figure 1.3, it consists of a stationary 
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plate, on which cells are grown, and a rotating cone. [51]  The cone can be rotated 

unidirectionally to produce steady, laminar shear stress (LSS).  It can also be rotated 

bidirectionally to produce an oscillatory shear stress (OSS).  [47, 52-54] 

The flow induced by the cone-and-plate model is well characterized.  In 

conventional fluid mechanics, the Reynolds number (Re) is a measure of the ratio of 

inertial to viscous forces acting on a moving fluid.  It can be expressed by the relationship 

below, where D is the characteristic length, v is velocity, and υ is the kinematic viscosity.  

υ
Dv

≡Re  

When Re < 1800, laminar flow exists.  When Re > 2200, turbulent flow exists.  Between 

these two values, when 1800 < Re < 2200, a transitional flow exists.  An analogous 

parameter has been established in cone-and-plate fluid mechanics, termed a “Reynolds 

like” parameter (R).  This parameter is the ratio of the centrifugal force to the viscous 

force and is defined as follows, where r is the radial position, ω is the angular velocity, α 

is the cone angle, and υ is the kinematic viscosity. 

υ
ωα

12
~ 22rR ≡  

There are three flow regimes that can be defined by this parameter.  When R << 

1, the viscous forces dominate and the fluid is purely azimuthal, varying linearly along 

the cone’s radius.  However, as R approaches 1, there is a tendency for the fluid to 

experience a centrifugal force which introduces a radial component to the flow.  Fluid 

will move radially outward at the cone’s surface and, correspondingly, will move radially 

inward at the plate’s surface.  When R > 1, the flow becomes turbulent [50].   
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Figure 1.3.  Diagram of a cone-and-plate apparatus for exposing endothelial cells to fluid 
shear stress.  Shear stress is a function of the angular velocity (ω), cone angle (α), gap 
height (h), fluid viscosity (µ), and radius (r). 

 

The shear stress on the plate surface can be calculated as follows, where µ is the 

dynamic viscosity, r is the radial position, ω is the angular velocity, h is the spacing 

between the apex of the cone and the plate, and α is the angle between the cone’s surface 

and the plate.  Therefore, one can control the level of shear stress by adjusting any of 

these parameters. 
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Figure 7 shows a typical pattern of alignment by human umbilical vein 

endothelial cells (HUVEC) following application of 24 hours shear stress.  As expected, 

static controls and cells exposed to oscillatory shear conditions maintained a so-called 

“cobblestone” appearance.  Cells exposed to laminar shear conditions elongated and 

aligned in the direction of flow as indicated. 

 

Animal Models   

The mouse has been used extensively in the past century as one of the primary 

mammalian model systems for human disease.  Mice share close genetic and physiologic 

ω

α
rh 

µ 
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similarities to humans.  They reproduce quickly and it is easy and economical to maintain 

mouse colonies.  Most importantly, the mouse genome can be manipulated and analyzed 

with relative ease, permitting us to genetically engineer very specific strains to model 

various disease conditions.   

 A so-called “knockout” mouse is a genetically engineered mouse in which one (or 

more) genes have been turned off or “knocked out.”  By disrupting a specific gene, any 

differences observed between it and its wild-type counterpart can possibly be attributed to 

that gene and researchers can infer the gene’s probable function.  This technology was 

first demonstrated in the late 1980’s by Mario Capecchi, Martin Evans, and Oliver 

Smithies, the work for which they were awarded the Nobel Prize in Physiology or 

Medicine in 2007 [55].  Currently there are thousands of different knockout mouse 

models in use. 

 We have chosen to use a p47phox-knockout mouse model which was originally 

created in the mid-1990’s as a model for chronic granulomatous disease (CGD) [56].  

The mouse p47phox gene is located on chromosome 5 and is 9.5 kilobases in length with 

eleven translated exons [57].  The knockout was created by targeting the 3’ terminus of 

exon 7.  A neomycin resistance cassette was inserted here to disrupt amino acid 221, a 

region of the protein known to be necessary for the function of both human and mouse 

p47phox [4, 6].  Since its establishment, this mouse model has been widely used in 

studies of not only CGD but also immune, cardiovascular, pulmonary, and neurologic 

diseases. [38, 40, 56]   
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CHAPTER TWO:  OBJECTIVES 

 

Atherosclerosis is an inflammatory disease that preferentially develops in regions 

of the arterial vasculature such as branches, curves, and bifurcations that experience low 

and/or unsteady, oscillating shear stress, as opposed to straight regions that experience 

higher, steady shear stress. Much of the disease process can be attributed to oxidative 

stress through reactive oxygen species generated by NADPH oxidases in these areas. It is 

known that endothelial cells lining the blood vessel are important modulators and 

indicators of vascular health. The differences between the atherogenic and 

atheroprotective areas in the vasculature can be reflected by gene and protein expressions 

of these endothelial cells.  Our goal is to determine what shear responses are affected by 

reactive oxygen species, particularly from the p47phox-dependent NADPH oxidases. 

 

Specific Aim 1:  Isolate and characterize mouse aortic endothelial cells. 

Hypothesis:  Mouse aortic endothelial cells that display typical endothelial cell 

markers can be isolated and cultured for in vitro experimentation. 

 

Specific Aim 2:  Determine the effect of p47phox-dependent NADPH oxidases on shear 

responsive gene expression profiles in endothelial cells. 

Hypothesis:  p47phox-dependent NADPH oxidases alter gene expression in 

response to fluid shear stress.   
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CHAPTER THREE:  MURINE AORTIC ENDOTHELIAL CELL  

ISOLATION AND CHARACTERIZATION 

 

Introduction 

 

Endothelial cells form a dynamic interface between the blood and the underlying 

vessel wall that responds to and transduces both humoral and biomechanical stimuli. [5]    

These cells are critical mediators in the development of diseases such as hypertension or 

atherosclerosis. Numerous transgenic mouse strains have been established to model 

human cardiovascular diseases, such as ApoE-/- mice which are hyperlipidemic and 

develop atherosclerotic lesions rapidly. [58, 59]   Transgenic mice are particularly useful 

because antibodies, pharmacologic inhibitors, or newer methods such as siRNA do not 

preclude non-specific effects that may largely confound experimental interpretation.  

Non-specific effects could include cell activation, interference with intracellular signaling 

cascades, or altered lifespan, among others.   

Whole animal models are often too complex to determine the role of a particular 

cell type, however.  Scientists often take advantage of in vitro systems to study cell-

specific responses.  Although still not ideal, an in vitro experimental system allows for a 

clear investigation of the endothelial cell response to a well-defined stimulus.  Much of 

the information we have gained regarding the endothelial cell response to mechanical 

forces or to agonists come from bovine aortic endothelial cells (BAEC) or human 

umbilical vein endothelial cells (HUVEC), both of which are relatively easy to isolate 

and culture in vitro.   

There are relatively few reports on the isolation, in vitro characterization, and use 

of murine aortic endothelial cells (MAEC). [53, 60-67]  The isolation methods that have 

been described can be categorized as either explant methods or enzymatic digestion 

methods.  In an explant method, sections of an aorta are placed on a matrix such as 
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gelatin, collagen, or Matrigel in culture media.  The endothelial cells are allowed to grow 

and expand outward from the tissue.  After a number of days, the non-endothelial cells 

are either removed manually, through selective cell culture, or by a cell sorting technique 

such as fluorescence-activated cell sorting (FACS) or magnetic cell sorting (MACS). [60, 

66, 67]  In an enzymatic digestion method, the aorta is treated with enzymes such as 

collagenase, dispase, or trypsin in order to digest the extracellular matrix to achieve a 

single cell suspension.  Only a minority of this cell suspension is endothelial cells, so it 

must be enriched by sorting out non-endothelial cells by FACS or MACS. [61, 65, 66]  

 We have developed a method to routinely isolate MAEC for use in further 

experiments.  This allows us to combine the power of the transgenic mouse model with in 

vitro experimental systems to determine cell-specific responses dependent on particular 

genes.   

 

Methods 

 

Mice 

 Two strains of mice were used to isolate endothelial cells.  C57BL/6 mice served 

as wild-type controls and were purchased from Jackson Laboratories on an as-needed 

basis.  p47phox-/- mice, first generated and described by Steve Holland, were initially 

purchased from Taconic. [56]  A breeding colony was established and maintained per 

IACUC protocols.  Breeding cages were supplied with sterile water supplemented with 

sulfamethoxazole/trimethoprim.    
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Method 1:  Isolation with BS-I Labeling followed by DiI-Ac-LDL Labeling  

 

Buffers, Media, and Cell Culture Materials 

All buffers and media were sterile-filtered prior to use.  Cell isolation buffer 

consisted of HBSS with Ca2+ and Mg2+ and 1% penicillin/streptomycin.  Digestion buffer 

consisted of HBSS without Ca2+ or Mg2+, 0.2% collagenase type I, 0.05% collagenase 

type II, and 1 unit/ml dispase.  Wash buffer consisted of HBSS without Ca2+ or Mg2+ and 

1% penicillin/streptomycin.  Labeling buffer consisted of HBSS without Ca2+ or Mg2+
, 

1% penicillin/streptomycin, 1% HI-FBS, 25 mM HEPES, and 5 ug/ml FITC-labeled BS-I 

(Sigma).  Sorting buffer consisted of HBSS without Ca2+ or Mg2+
, 1% 

penicillin/streptomycin, 1% HI-FBS, and 25 mM HEPES.  Growth media for MAEC was 

MCDB 131 supplemented with 10% heat-inactivated fetal bovine serum (HI-FBS), 1% 

L-glutamine, 1% penicillin/streptomycin, 1% endothelial cell growth supplement 

(ECGS), 10 units/ml heparin sulfate, 50 ug/ml ascorbic acid, 1 ug/ml hydrocortisone, 2 

ng/ml FGF, 1 ng/ml VEGF, 10 ng/ml EGF, and 2 ng/ml IGF.  Unless otherwise noted, all 

cell culture plates and dishes were coated with 0.1% gelatin.  

 

Isolation of Mouse Aortic Endothelial Cells 

Surgical procedures and cell culture were performed under aseptic conditions.  

Twelve to sixteen 3-4 week old male mice were used for each isolation.  The mice were 

sacrificed by CO2 asphyxiation according to standard, IACUC-approved protocols.  A 

midline incision was made from the lower abdomen to the neck.  The vasculature was 

perfused through the left cardiac ventricle with sterile normal saline supplemented with 

10 units/ml heparin sulfate.  The abdominal organs, lungs, and esophagus were removed 

and discarded.  The periadventitial fat was carefully dissected away from the aorta.  Once 

cleaned, the thoracic aorta was removed and placed in a 35-mm culture dish with cell 
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isolation buffer.  The aorta was bisected longitudinally to expose the endothelium, taking 

care to maintain the endothelial layer’s integrity.  All aortas were pooled and collected in 

0.5 ml cell isolation buffer.   

Digestion buffer was added to the pooled aortas.  The aortas were digested for 30 

min in a 37°C water bath, vortexing every ten minutes.  After this, the mixture was 

passed over a sterile 100-um nylon cell filter.  The filter was washed twice with 1 ml 

0.25% trypsin-EDTA.  The filtered suspension was centrifuged at 2000 rpm for 3 min in 

order to pellet the cells.  The supernatant was discarded.  The pellet was washed with 

sorting buffer.  The suspension was centrifuged again at 2000 rpm for 2 min in order to 

pellet the cells.   

The supernatant was removed and cells were then resuspended in 1 ml labeling 

buffer and incubated on a rocker at 4°C for 30 min.  After this time, the cells were 

centrifuged at 2000 rpm for 3 min, washed with sorting buffer, and then centrifuged 

again.  The cells were resuspended in a total of 1 ml sorting buffer. 

FITC BS-I-labeled cells were collected by FACS using a BD FACSDiva machine.  

The number of positively sorted cells ranged from 5 x 103 to 10 x 104, with a typical 

number around 3 x 104.  These cells were resuspended in growth media and then seeded 

into 12- or 6-well plates.  The cells were kept in a humidified cell culture incubator with 

5% CO2 at 37°C.  The cells were grown to confluence before passaging at a 1:2  or 1:3 

ratio.   

Once in a 10-cm dish, usually after 2 to 3 weeks, cells were labeled with DiI-Ac-

LDL at 37°C for 4 hours.  The cells were trypsinized and pelleted by centrifugation at 

2000 rpm for 2 min.  The cells were washed, pelleted again, and resuspended in sorting 

buffer.  The DiI-Ac-LDL-labelled cells were collected by FACS using a BD FACSDiva 

machine.  The number of positively sorted cells ranged from 4 x 104 to 2 x 105.  The cells 

were resuspended in growth media and then seeded into 6-well plates.  The cells were 
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kept in a humidified cell culture incubator with 5% CO2 at 37°C.  The cells were grown 

to confluence before passaging at a 1:2 or 1:3 ratio.    

 

Method 2:  Isolation with DiI-Ac-LDL Labeling Alone 

 

Buffers, Media, and Cell Culture Materials 

All buffers and media were sterile-filtered prior to use.  Cell isolation buffer 

consisted of HBSS with Ca2+ and Mg2+ and 1% penicillin/streptomycin.  Digestion buffer 

consisted of HBSS without Ca2+ or Mg2+ and 0.4% collagenase type II.  Wash buffer 

consisted of HBSS without Ca2+ or Mg2+ and 1% penicillin/streptomycin.  Sorting buffer 

consisted of HBSS without Ca2+ or Mg2+
, 1% penicillin/streptomycin, 1% HI-FBS, and 25 

mM HEPES.  Growth media for MAEC was MCDB 131 supplemented with 10% heat-

inactivated fetal bovine serum (HI-FBS), 1% L-glutamine, 1% penicillin/streptomycin, 

1% endothelial cell growth supplement (ECGS), 10 units/ml heparin sulfate, 50 ug/ml 

ascorbic acid, 1 ug/ml hydrocortisone, 2 ng/ml FGF, 1 ng/ml VEGF, 10 ng/ml EGF, and 

2 ng/ml IGF.  Unless otherwise stated, all cell culture plates and dishes were coated with 

0.1% gelatin. 

 

Isolation of Mouse Aortic Endothelial Cells 

Surgical procedures and cell culture were performed under aseptic conditions.  

Twelve to sixteen 3-4 week old male mice were used for each isolation.  The mice were 

sacrificed by CO2 asphyxiation according to standard, IACUC-approved protocols.  A 

midline incision was made from the lower abdomen to the neck.  The vasculature was 

perfused through the left cardiac ventricle with sterile normal saline supplemented with 

10 units/ml heparin sulfate.  The abdominal organs, lungs, and esophagus were removed 

and discarded.  The periadventitial fat was carefully dissected away from the aorta.  Once 

cleaned, the thoracic aorta was removed and placed in a 35-mm culture dish with cell 
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isolation buffer.  The aorta was bisected longitudinally to expose the endothelium, taking 

care to maintain the endothelial layer’s integrity.  All aortas were pooled and collected in 

0.5 ml cell isolation buffer.   

Digestion buffer was added to the pooled aortas.  The aortas were digested for 20 

min in a 37°C water bath, vortexing every few minutes.  After this, the supernatant was 

removed and saved and 9 ml 0.05% trypsin was applied to the aortas.  The aortas were 

incubated for an additional 5 min in a 37°C water bath, vortexing periodically.  At the 

end of this incubation, 1 ml HI-FBS was added to stop the enzymatic reaction.  This 

mixture was passed over a sterile 100-um nylon cell filter.  The collagenase supernatant 

from earlier in the procedure was also passed over the filter as well, adding it to the cell 

suspension.  This suspension was centrifuged at 2000 rpm for 3 min in order to pellet the 

cells.  The supernatant was discarded.  The pellet was washed with sorting buffer.  The 

suspension was centrifuged again at 2000 rpm for 2 min in order to pellet the cells.   

The cells were then resuspended in 12 ml growth media and seeded onto a 10-cm 

culture dish coated with 0.1% gelatin.  Approximately one hour later, the unbound cells 

were removed and seeded onto a second 10-cm culture dish coated with 0.1% gelatin.  

Growth media was added to the first dish with adhered cells.  Both dishes were kept in a 

humidified cell culture incubator with 5% CO2 at 37°C.   

Once confluent, cells were labeled with DiI-Ac-LDL at 37°C for 4 hours.  The 

cells were trypsinized and pelleted by centrifugation at 2000 rpm for 2 min.  The cells 

were washed, pelleted again, and resuspended in sorting buffer.  The DiI-Ac-LDL-

labeled cells were collected by FACS using a BD FACSDiva machine.  The number of 

positively sorted cells ranged from 1 x 105 to 4 x 105.  The cells were resuspended in 

growth media and then seeded into 6-well plates coated with 0.1% gelatin.  The cells 

were kept in a humidified cell culture incubator with 5% CO2 at 37°C.  The cells were 

grown to confluence before passaging at a 1:2 or 1:3 ratio.    
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Immortalization of Primary MAEC 

Primary MAEC were isolated and sorted by FACS for DiI-Ac-LDL positive cells, 

as described above in Method 1. Cells were immortalized by infection with a polyoma 

middle T (PmT) antigen, as previously described. [68]  A PmT-producing packaging cell 

line was kindly provided by Dr.  Elisabetta Dejana (FIRC Institute of Molecular 

Oncology, Milan, Italy).  Briefly, PmT-conditioned medium was collected, 0.22 um-

filtered, and stored at -80°C until use.  Forty-eight hours post-seeding, cells were treated 

with PmT-conditioned medium along with 8 ug/ml polybrene (Sigma) for 4 hours at 

37°C after which it was replaced with complete growth medium. After reaching a tight, 

confluent monolayer, cells were subcultured and then grown in G418-containing  

selective growth medium (1mg/ml). Cells were observed and regularly subcultured for 

over 8 weeks before complete cell selection was observed. 

 

Reverse-Transcriptase PCR 

For reverse-transcriptase polymerase chain reaction (RT-PCR) analysis, total 

RNA was isolated and purified using the RNeasy kit according to the manufacturer’s 

protocols including DNase digestion (Qiagen).  Quality of the RNA was ensured by both 

spectrophotometric analysis as well as visualization on an electrophoresis denaturing 

agarose gel.  Quantity of the RNA was determined by spectrophotometric analysis at an 

absorbance of 260 nm.  RNA was stored at -80°C until further use.  Four micrograms of 

RNA from each sample were used in a reverse-transcriptase reaction with Superscript II 

(Invitrogen).  The single-stranded cDNA was then purified using Micro-Biospin 30 

chromatography columns (Bio-Rad).  cDNA was stored at -20°C until further use. 

 

Immunocytochemistry 

Cells were rinsed with ice-cold PBS and fixed in 4% paraformaldehyde for 10 

minutes at room temperature.  Cells were then permeabilized with 0.2% Triton X-100 for 
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10 minutes, quenched with 50 mM ammonium chloride, and incubated in a blocking 

buffer of 3% BSA in PBS for one hour at room temperature.  Cells were labeled with one 

of the following primary antibodies overnight at 4°C: VE-cadherin (1:50, Cayman 

Chemical) or PECAM-1 (1:50, Chemicon).  Cells were washed with PBS and incubated 

with one of the following secondary antibodies:  AlexaFluor 488-conjugatedgoat anti-

rabbit (1:100, Molecular Probes) or Cy3-conjugated goat anti-hamster (1:100, Jackson 

Immunolabs).  The samples were mounted with ProLong Gold anti-fade media, allowed 

to set and dry for 24 hours, and then imaged using a Zeiss Axiovert 200M fluorescent 

microscope. 

 

Immunoblotting 

 Cells were rinsed in ice-cold PBS and lysed in RIPA buffer containing 50 mM 

Tris-HCl (pH 7.4), 1% NP-40, 0.25% sodium deoxycholate, 150 mM sodium chloride, 1 

mM EDTA, 30 mM sodium fluoride, 40 mM ß-glycerophosphate, 10 mM sodium 

pyrophosphate, 2 mM sodium orthovanadate, 1 mM phenylmethylsulfonylfluoride 

(PMSF), and protease inhibitors (Roche).  Lysates were further homogenized by brief 

ultrasonication on ice.  Samples were centrifuged at 10,000 rpm for 10 minutes to pellet 

DNA and debris.  The supernatant was collected and protein content was determined 

using a modified Lowry protein assay.  Samples were mixed with Laemmeli buffer and 

boiled for 5-10 minutes prior to use.  Aliquots of cell lysate were separated on SDS-

PAGE gels.  The proteins were transferred to a polyvinylidine difluoride (PVDF) 

membrane (Millipore).  The membranes were probed with antibodies specific to eNOS 

(1:1000, BD Transduction), alpha smooth muscle actin (1:1000, Neomarkers), or total 

actin (1:5000, Santa Cruz) overnight at 4°C.  The membranes were washed and then 

incubated with secondary antibodies for 2 hours at room temperature before 

chemiluminescent detection:  ALP-conjugated goat anti-mouse (1:3000, Bio-Rad), ALP-
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conjugated goat anti-rabbit (1:3000, Bio-Rad) or ALP-conjugated rabbit anti-goat 

(1:5000, Bio-Rad). 

 

Results 

 

Marker Specificity 

 We used two markers for identifying and sorting endothelial cells: a lectin from 

Bandeiraea Simplicifolia (BS-I) and acetylated LDL (Ac-LDL).  BS-I has been 

characterized to specifically bind to arterial endothelial cells. [69]  In order to ensure that 

this was the case in the mouse aorta, we incubated a whole aorta with FITC-conjugated 

BS-I under the same conditions as we used for labeling our cell isolates and observed the 

marker’s specificity with a confocal microscope.  As shown in Figure 3.2(a), BS-I labeled 

the endothelial cell junctions and was largely confined to the intima.     

 DiI-conjugated acetylated LDL (DiI-Ac-LDL) is an established endothelial cell 

marker.  It is routinely used to identify endothelial cells in mixed cell populations.  It 

does not label smooth muscle cells, fibroblasts, pericytes, or epithelial cells.  It labels 

endothelial cells and also monocytes (and macrophages).  However, monocytes can still 

be differentiated from endothelial cells by either cell morphology or signal intensity since 

they are more brightly labeled. [70]  Shown in Figure 3.2(b) is an example of DiI-Ac-

LDL labeling of BAEC.  These cells exhibit typical cobblestone endothelial morphology 

and are uniformly and intensely labeled with DiI-Ac-LDL. 
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Figure 3.1.  Markers used to identify and sort endothelial cells.  (a) Lectin BS-I 
specifically labels endothelial cells in the mouse aorta.  The thoracic aorta was cleaned, 
excised, and opened longitudinally.  The aorta was then incubated with 5 ug/ml FITC-
conjugated BS-I for 30 min at 4°C.  The aorta was carefully washed to remove excess 
BS-I without disturbing the endothelium and mounted on a standard microscope slide 
with VectaShield with Dapi.  The sample was imaged immediately on a Zeiss LSM 510 
confocal microscope.  Shown is an orthogonal view with three different orientations.  The 
FITC-BS-I can be distinguished from green autofluorescence because the signal is more 
intense and localized to the cell-cell junctions.  The signal is almost exclusively in the 
intima.  (b)  DiI-Ac-LDL efficiently labels endothelial cells.  Bovine aortic endothelial 
cells were grown to confluence.  Standard growth media was replaced with growth media 
containing 1 ug/ml DiI-Ac-LDL and incubated for 4 hours at 37°C.  The cells were then 
washed twice with HBSS with Ca2+ and Mg2+ to remove excess DiI-Ac-LDL and imaged 
with a Zeiss Axiovert 200M fluorescent microscope.      
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Primary Cell Cultures Contain Multiple Cell Types 

We initially based our isolation method on that of Kevil and Bullard, as shown in 

Figure 3.1(a). [61]  One major difference is that we did not perform an external digestion 

of the aortas to remove the adventitial cells; this is because in a pilot experiment (not 

described) we found that this significantly compromised the architecture of the vessel and 

made it difficult to manipulate in later steps while still preserving the endothelial cell 

layer.   

Even after sorting with BS-I, however, we found that there were multiple cell 

morphologies in our cultures.  Shown in Figure 3.3(a) are the cells several hours after 

sorting with BS-I.  The cells were sparse but adhered to the culture dish.  After several 

days, the cells proliferated and were mostly confluent, as shown in Figure 3.3(b).  We 

were able to observe multiple cell morphologies at this point.  There were slightly 

elongated, spindle-shaped cells, as seen on the left and in the middle of the picture.  

There were narrow, stringy cells, shown mainly to the left and lower-left of the picture.  

There were also compact, cobblestone cells, apparent on the right of the picture.  While 

these displayed a prototypic endothelial cell “cobblestone” morphology, they do not 

display endothelial cell markers as we will show later. 

 

Primary Endothelial Cells are Rapidly Lost 

 Since we observed multiple cell morphologies in our BS-I sorted cell cultures, we 

used a second marker, DiI-Ac-LDL, to identify which cells were actually endothelial 

cells.  Figure 3.4 shows DiI-Ac-LDL labeling of primary cells.  At passage 2, there are a 

significant number of LDL-positive cells.  Note that the positively labeled cells are not 

those with cobblestone morphology; instead, they are the slightly elongated, spindle-

shaped cells.  As passage 4, there are fewer LDL-positive cells.  And by passage 14, there 

are practically no LDL-positive cells remaining in the culture.  Whether this loss is due to 

dedifferentiation of the endothelial cells initially present in the culture or due to a  
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Figure 3.2.  Methods for isolating primary MAEC.  MAEC are isolated using an 
enzyme digestion technique.  In Method 1, the cells are first sorted by BS-I, cultured, and 
then later sorted by DiI-Ac-LDL.  In Method 2, the cells are initially cocultured and then  
sorted by DiI-Ac-LDL before use.
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Figure 3.3.  Primary cell cultures contain multiple cell types.  As described in the 
methods, primary mouse aortic cells were isolated using enzymatic digestion, labeled 
with FITC-BS-I, and then sorted using a BD FACSDiva machine.  The positively sorted 
cells were plated in a 6-well.  As shown in (a), the cells were sparse but adhered to the 
plate.  Four days later, as shown in (b), the cells were confluent but displayed multiple 
cell types as distinguished by their differing morphologies.  We can see thin, stringy 
cells, such as those marked with a dashed arrow.  We can also see slightly elongated, 
spindle-shaped cells, such as those marked with a solid arrow.  We can also see a large  
patch of cobblestone-shaped cells to the right (unmarked).   

Day 0 

Day 4 
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Figure 3.4.  Primary endothelial cells are rapidly lost in culture.  Primary mouse 
aortic cells were isolated using enzymatic digestion, labeled with FITC-BS-I, and then 
sorted using a BD FACSDiva machine.  The cells were initially plated in a 6-well and 
then passaged upon confluence at a ratio of 1:2 to 1:4.  At the indicated passages, the 
cells were incubated with 1 ug/ml DiI-Ac-LDL for 4 hours at 37°C.  The cells were 
rinsed twice with HBSS with Ca2+ and Mg2+ to remove excess DiI-Ac-LDL and then 
immediately imaged with a Zeiss Axiovert 200M fluorescent microscope.  The relative 
number of LDL-positive cells decreased with each passage, apparent even at P4.  Note 
the presence of “daughter cells,” circled, at P14. 
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contaminating, hyperproliferative cell type such as fibroblasts, we are still not sure.  Yet 

we can still gain valuable information from this exercise.  First, we know that primary 

endothelial cells proliferate slowly.  Low-passage cultures take at least two or more days 

to become confluent, even when passaged at a conservative ratio of 1:2.  High-passage 

cultures grow more rapidly and take less time to become confluent.  We were able to 

make an interesting observation since the LDL-positive cells were sparsely distributed 

across the cell culture dishes at this point.  Approximately three days after passaging, we 

could see “daughter cells” appear in the culture – where there had been one, there were 

two, meaning that it took that amount of time for the cell to divide.  This suggests the 

“doubling time” for primary MAEC is quite long at two to three days, compared to one or 

two days for most conventional endothelial cell cultures such as HUVEC or BAEC.   

 

Sorting with DiI-Ac-LDL Alone Improves Yield 

 We also pursued a variation on our initial cell isolation method, shown in Figure 

3.1(b).  After enzymatic digestion of the pooled aortas, we simply seeded all of the cells 

in one 10-cm dish.  After approximately one hour, the non-adhered cells were transferred 

to a second 10-cm dish.  The majority of the LDL-positive cells remained in the first dish 

(data not shown), indicating that they adhered relatively rapidly to the gelatin coating.  

These LDL-positive cells continued to proliferate and expand in the coculture.  As shown 

in Figure 3.5, these LDL-positive cells, as before, had an elongated appearance.  We were 

able to enrich the LDL-positive cell population by selectively removing LDL-negative 

cells from the dish by trypsinization since the LDL-positive cells were relatively resistant 

to removal.  LDL-positive cells from C57BL/6  mice (MAE-WT) formed a matrix across 

the entire dish, with cells migrating and growing towards one another, as shown in Figure 

3.5(a).  LDL-positive cells from p47phox-/- mice (MAE-p47) behaved somewhat 

differently; they grew primarily in isolated clusters, as shown in Figure 3.5(b).  After 
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approximately one or two weeks, the cells were sorted using DiI-Ac-LDL.  We were able 

to obtain yields an order of magnitude higher than with our previous method.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.5.  Sorting with DiI-Ac-LDL alone improves yield.  Primary mouse aortic 
cells were isolated using enzymatic digestion and then immediately seeded onto a 10-cm 
dish in growth media.  Approximately one hour later, unbound cells were transferred to a 
second dish and the initial dish was replenished with fresh growth media.  Upon reaching 
confluence, cells were incubated with 1 ug/ml DiI-Ac-LDL for 4 hours at 37°C.  The 
cells were rinsed twice with HBSS with Ca2+ and Mg2+ to remove excess DiI-Ac-LDL 
and then immediately imaged with a Zeiss Axiovert 200M fluorescent microscope.  The 
majority of LDL-positive cells could be found in the initial dish, where the cells had 
adhered first.  Pictures of these cells are shown above.  On the left are primary aortic cells 
from wild-type (C57BL/6) mice and on the right are primary aortic cells from p47phox-/- 
mice.   

Wild-Type p47phox-/- 
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Characterization of Primary Endothelial Cells  

From our observation early on that cells sorted with BS-I alone were comprised of 

multiple cell types, we implemented a second round of cell sorting with DiI-Ac-LDL.  

However, even after this second round of selection, we still observed a contaminating cell 

type after several passages as shown in Figure 3.3.  Attempts to minimize this other cell 

type through cell culture techniques or media supplements were not successful (data not 

shown).  We decided that in the interest of time, the most practical strategy to achieve our 

goal was to maximize our initial cell yield and to use these cells for experiments as early 

as possible in order to have a predominantly endothelial cell culture.   

 LDL-positive primary cells exhibited an endothelial phenotype.  As shown in 

Figure 3.6, these cells expressed VE-cadherin and PECAM1, two endothelial cell 

markers.  Furthermore, as shown in Figure 3.7, MAE-WT and MAE-p47 both express 

another characteristic endothelial cell marker, eNOS, by PCR (a) and by Western (b).  

While we know there is a small percentage of “contaminating” LDL-negative cells in our 

cultures, the absence of alpha-smooth muscle actin indicates that the LDL-negative cells 

are at least not smooth muscle cells.   

 

Characterization of Immortalized Endothelial Cells 

 As described in the methods, LDL-positive primary cells were infected with a 

retrovirus containing a PmT antigen.  After two months in selection media, we were able 

to observe cell cultures that were almost entirely LDL-positive.   

 LDL-positive immortalized endothelial cells exhibit an endothelial phenotype.  As 

shown in Figure 3.7, these cells express VE-cadherin and PECAM1, two endothelial cell 

markers.  Furthermore, the immortalized wild-type cells (iMAE-WT) and the 

immortalized p47phox-/- cells (iMAE-p47) both express eNOS by PCR (a) and by 

Western (b).  These cell cultures do not contain smooth muscle cells, as indicated by the 

absence of alpha-smooth actin. 
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Figure 3.6.  Primary MAEC exhibit the characteristic endothelial cell marker 
PECAM1.  Primary cells were isolated as described in methods.  Once confluent, the 
cells were rinsed with PBS, fixed with 4% paraformaldehyde, and incubated with an 
antibody to PECAM1.  A Zeiss Axiovert 200M fluorescent microscope was used to 
image the results.  Pictures depict PECAM1 staining in MAE-WT and MAE-p47 with a 
negative control.  There is non-uniform staining due to the cells growing in coculture and 
being stained prior to sorting.  
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Figure 3.7.  LDL-positive primary MAEC express the endothelial gene eNOS.  
Primary cells were sorted first with FITC-BS-I and then with DiI-Ac-LDL.  Cell lysates 
were collected in either RLT buffer for mRNA analysis or RIPA buffer for protein 
analysis.  As described in the methods section, RNA was isolated and reverse transcribed 
to yield single-stranded cDNA.  Conventional PCR was used to analyze expression of 
eNOS using gene-specific primers.  The results are shown in the top panel (a).  Both 
MAE-WT and MAE-p47 expressed eNOS mRNA.  Water and –RT controls were used to 
demonstrate that no extragenomic or genomic contamination was present.  (b) Protein 
lysates were run on a denaturing SDS-PAGE gel, transferred to a PVDF membrane, and 
blotted with a monoclonal eNOS antibody.  Additionally, the membrane was blotted with 
an alpha-smooth muscle actin (α-SMA) antibody in order to show that the cell cultures 
were not contaminated with smooth muscle cells.  Wild-type aorta lysate was used as a 
positive control.  Both MAE-WT and MAE-p47 expressed eNOS protein and did not 
express α-SMA.   
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Figure 3.8.  Immortalized MAEC exhibit characteristic endothelial cell markers, 
including PECAM1 and VE-cadherin.  Primary cells were isolated and immortalized as 
described in methods.  Once confluent, the cells were rinsed with PBS, fixed with 4% 
paraformaldehyde, and incubated with antibodies to PECAM1 and VE-cadherin.  A Zeiss 
Axiovert 200M fluorescent microscope was used to image the results.  The top row of 
pictures depicts PECAM1 staining in iMAE-WT and iMAE-p47 with a negative control.  
The bottom row of pictures depicts VE-cadherin staining in iMAE-WT and iMAE-p47 
with a negative control.   
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Figure 3.9.  LDL-positive immortalized MAEC express the endothelial gene eNOS.  
Immortalized cells were cultured as described in the methods section.  RNA was isolated 
using an RNeasy Mini Kit and reverse transcribed using Superscript III to yield single-
stranded cDNA.  Conventional PCR was used to analyze expression of eNOS using gene-
specific primers.  The results are shown in the top panel (a).  Both iMAE-WT and iMAE-
p47 immortalized cells expressed eNOS mRNA.  Water and –RT controls were used to 
demonstrate that no extragenomic or genomic contamination was present.  (b) Protein 
lysates were run on a denaturing SDS-PAGE gel, transferred to a PVDF membrane, and 
blotted with a monoclonal eNOS antibody.  Additionally, the membrane was blotted with 
an alpha-smooth muscle actin (α-SMA) antibody in order to show that the cell cultures 
were not contaminated with smooth muscle cells.  Wild-type aorta lysate was used as a 
positive control.  Both iMAE-WT and iMAE-p47 immortalized cells expressed eNOS 
protein and did not express α-SMA.   
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Discussion 

 

The isolation and culture of mouse aortic endothelial cells is a challenge on many 

levels.  Initial yield from each mouse is quite low given the size of each aorta.  We have 

estimated that there are just a few thousand endothelial cells in one thoracic aorta, so 

even with maximum efficiency and after pooling many aortas together, we begin with 

perhaps 50,000 endothelial cells.  These cells are mature, terminally differentiated cells 

and do not readily proliferate in culture.   

There is some question as to how to define an endothelial cell.  Endothelial cells 

display remarkable heterogeneity in vivo which likely carries over into the in vitro 

setting.  [71-73]  Ultrastructural features such as Weibel-Palade bodies are not expressed 

uniformly throughout the vascular system and many genes associated with endothelial 

cells, such as eNOS, are not exclusive to only these cells.  The only consistent definition 

for an endothelial cell is its anatomic definition – a cell that lines the inner wall of a blood 

vessel.  With this in mind, we used several different markers of endothelial cells in 

optimizing our cell isolation method.  We initially used BS-I lectin as it was shown to be 

specific for endothelial cells in vivo, as reported by other and shown by us in Figure 3.2. 

[69]  However, we were not sure as to its specificity in vitro.  As our cells lost their 

ability to take up DiI-Ac-LDL, they often maintained their ability to bind BS-I.  We 

continued to use DiI-Ac-LDL since it is a more widely accepted marker for endothelial 

cells and we were able to correlate it with typical endothelial cell characteristics and 

behavior.  LDL-positive cells expressed eNOS at both the mRNA and protein levels, as 

shown in Figures 3.7 and 3.9, while LDL-negative cells did not express eNOS (data not 

shown).  Furthermore, LDL-positive cells aligned in the direction of flow (data shown in 

Chapter 4) while LDL-negative cells did not (data not shown).  We concluded that uptake 

of DiI-Ac-LDL was the most important marker for indicating an endothelial phenotype.  
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Once in monoculture, LDL-positive cells alone did not proliferate rapidly.  It is 

possible that MAEC require autocrine and paracrine factors from both other endothelial 

cells and other cell types in order to proliferate.  This has been reported for hepatic 

sinusoidal endothelial cells cultured from rat. [74]  We observed that when we 

subcultured LDL-positive cells into separate small dishes, as opposed to a larger dish of 

equivalent surface area, they were rapidly lost (data not shown).  Perhaps they require 

signals from one another to maintain a differentiated state.  Furthermore, we observed 

that LDL-positive cells proliferated more readily under coculture conditions.  We could 

see large patches of LDL-positive cells, shown in Figure 3.5, that proliferated and yielded 

far greater cell numbers than when grown under monoculture conditions.   

Not only did LDL-positive cells not proliferate, but these cell cultures were 

eventually overtaken by LDL-negative cells.  Whether this was due to an invading cell 

type, such as fibroblasts, which proliferate rapidly, or dedifferentiation of the LDL-

positive cells, we are still not sure.  If it was due to an invading cell, the possible cell 

types would include smooth muscle cells, pericytes, monocytes/macrophages, adipocytes, 

or fibroblasts, all cells that could be present in the aorta as we removed it.  We did not 

detect alpha-smooth muscle actin by Western (shown in Figure 3.7), however, indicating 

that the “invading cells” were not smooth muscle cells or pericytes.  By PCR, we 

detected one of two fibroblast markers – fibroblast specific protein (Fsp) but not thymus 

cell antigen 1 (Thy1) – and one of two adipocyte markers – lipoprotein lipase (Lpl) but 

not adiponectin (Adipoq) (data not shown).  We could not conclude anything from these 

results.  The only definitive method to answer this question would be to perform a genetic 

lineage tracing experiment, as has been described with murine pancreatic cells.  This 

report concluded that cultured β-cells both dedifferentiate and stop proliferating, 

eventually being eliminated from cell cultures by non-β-cells. [75]  A similar experiment 

could be done with MAEC; however, this would be a significant undertaking and, in the 

interest of time, it was not done for the present study.  
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Despite these challenges, we were able to successfully isolate small populations 

of LDL-positive cells which have many characteristics of endothelial cells.  These small 

populations were used in further experiments, as will be described in the following 

chapter.  Furthermore, these cells were successfully immortalized with a PmT virus 

which yielded highly proliferative LDL-positive cell cultures that exhibited endothelial 

cell markers such as eNOS, VE-cadherin, and PECAM1.  We are aware that the 

immortalization process may have impacted intracellular signaling pathways and thus 

may affect certain phenotypic responses.  However, with proper screening, these cells 

lines can potentially be used indefinitely to study endothelial responses. 
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CHAPTER FOUR:   

p47PHOX-DEPENDENT SHEAR RESPONSES IN ENDOTHELIAL CELLS 

 

Introduction 

 

Endothelial cells form a dynamic interface between the blood and the underlying 

vessel wall that responds to and transduces both humoral and biomechanical stimuli.  

Blood flow imparts a shearing stress on these cells that has been shown to affect cell 

morphology and function including regulation of vascular tone, vessel wall remodeling, 

hemostasis, and inflammatory responses. [5]  The importance of this shear stress in 

vascular pathophysiology is shown by the focal development of atherosclerosis in regions 

of branches, curves, and bifurcations in the arterial tree that experience disturbed flow or 

unsteady, oscillating shear stress and low mean shear stress.  In contrast, straight regions 

of arteries that experience steady, unidirectional shear stress are protected from early 

lesion development. [76]  The mechanisms by which different types of flow and shear 

stress exert atheroprotective or atherogenic effects have been the subject of intense 

investigation for many years.  These opposite effects may be determined by the 

differential expression of genes and proteins which ultimately induce these different 

phenotypes.  In the past few years, several studies have addressed these opposite effects 

by using the high-throughput method of microarray analysis to determine expression 

profiles of mechanosensitive genes. [54, 77-85]  The functional importance of those 

genes, including Klf2 and Bmp4, is currently being established. 

Reactive oxygen species (ROS) have been shown to play a role in atherosclerotic 

development. [24]  Specifically, oxidative stress is an important cause of endothelial cell 

dysfunction. [86]  For example, ROS signaling is associated with increased expression of 

endothelial adhesion molecules such as e-selectin, ICAM1, and VCAM1, all of which 

play essential roles in the recruitment of monocytes to the subintimal layer, a critical step 
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in the progression of atherosclerosis. [6, 24, 42, 53]  An important source of endothelial 

cell-derived ROS is the NADPH oxidase.  Five NADPH oxidases have been cloned: 

Nox1, Nox2, Nox3, Nox4, and Nox5. [87]  Nox1 is expressed in endothelial cells and 

smooth muscle cells; Nox2 is expressed in endothelial cells and adventitial fibroblasts; 

Nox4 is found in endothelial cells, smooth muscle cells, and fibroblasts. [26, 88, 89]  

p47phox is a cytosolic component of the NADPH oxidases that is necessary for optimum 

activation of Nox1 and Nox2. [90]  Shear stress can induce ROS production in 

endothelial cells from a variety of sources, including NADPH oxidases. [28, 42, 53, 91]   

Despite the role of ROS produced from NADPH oxidases in shear-dependent 

responses including inflammation, systematic investigation of which genes are regulated 

by shear in an NADPH oxidase-dependent manner has not been addressed.  We 

hypothesized that LS and OS differentially regulate gene expression profiles in NADPH 

oxidase-dependent and -independent manners and these mechanosensitive and NADPH 

oxidase-sensitive genes would play critical roles in endothelial biology and 

atherosclerosis.  Here, we examined the initial part of this hypothesis by carrying out 

DNA microarray studies using mouse aortic endothelial cells (MAEC) obtained from 

wild-type and p47phox-/- mice exposed to unidirectional laminar shear (LS) and 

oscillatory shear (OS) conditions. 

 

Methods 

 

Cell Culture 

 MAEC were isolated as described in the previous chapter.  Cells were cultured at 

37°C and 5% CO2 in growth media of MCDB 131 supplemented with 10% heat-

inactivated fetal bovine serum (HI-FBS), 1% L-glutamine, 1% penicillin/streptomycin, 

1% endothelial cell growth supplement (ECGS), 10 units/ml heparin sulfate, 50 ug/ml 

ascorbic acid, 1 ug/ml hydrocortisone, 2 ng/ml FGF, 1 ng/ml VEGF, 10 ng/ml EGF, and 
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2 ng/ml IGF.  For shear stress experiments, MAEC were seeded onto 35-mm culture 

dishes coated with 0.1% gelatin and grown to confluence.  Media were changed to 

growth media containing 5% (v/v) Hyskon approximately one hour prior to experiments.  

 Immortalized MAEC (iMAEC) were developed as described in the previous 

chapter.  Cells were cultured at 37°C and 5% CO2 in growth media of DMEM 

supplemented with 10% HI-FBS, 1% penicillin/streptomycin, and 1% ECGS.  For shear 

stress experiments, iMAEC were seeded onto 10-cm culture dishes coated with 0.1% 

gelatin and grown to confluence.  Media were changed one day prior to experiments. 

Human umbilical vein endothelial cells (HUVEC) were purchased (Emory 

Dermatology) and grown to confluence at 37°C and 5% CO2 in growth media of M199 

supplemented with 20% heat-inactivated fetal bovine serum (HI-FBS), 1% 

penicillin/streptomycin, 10 units/ml heparin sulfate, and 1% endothelial cell growth 

supplement (isolated by us).  For shear stress experiments, HUVEC were seeded onto 

either 35-mm culture dishes or 10-cm culture dishes coated with 0.1% gelatin and grown 

to confluence.  Media were changed one day prior to experiments.  Cells from passages 4 

to 6 were used. 

 

Cone-and-Plate Shear Apparatus 

Cells were exposed to an arterial level of unidirectional laminar shear stress (L or 

LS) (~15-20 dyn/cm2) or oscillatory shear stress (O or OS) (±5 dyn/cm2 with directional 

changes of flow at 1 Hz) for 24 hours in growth media using a cone-and-plate shear 

apparatus, as described previously. [51, 53]  The apparatus was maintained in a tissue 

culture incubator at 37°C and 5% CO2.   

 

RNA Isolation 

Total RNA was isolated and purified using the RNeasy kit according to the 

manufacturer’s protocols including DNase digestion (Qiagen).  Quality of the RNA was 
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ensured by both spectrophotometric analysis as well as visualization on an 

electrophoresis denaturing agarose gel.  Quantity of the RNA was determined by 

spectrophotometric analysis at an absorbance of 260 nm.  RNA was stored at -80°C until 

further use.   

 

Microarray Procedures 

RNA QC:  RNA integrity is critical to the quality of microarray data.  The 

integrity of total RNA for each sample was assessed using an RNA 6000 Nano Lab Chip 

on a Agilent 2100 Bioanalyzer.  We used RNA samples with 260/280 ratios between 1.8 

and 2.0, RNA Integrity Number (RIN) values of 10, and 28S:18S ratios of 1.5 and higher.  

This is shown in Figure 4.1. 

Arrays:  Gene expression profiling was measured using Affymetrix reagents kits 

and Affymetrix Mouse 430v2 Genechip Arrays comprised of over 45,000 probe sets 

representing over 34,000 well-substantiated mouse genes.  Target labeling, hybridization 

and post-hybridization processing were performed as described in the Affymetrix 

GeneChip Expression Analysis manuals.  100 ng of total RNA was reverse transcribed 

using T7-oligo(dT) primers and SuperScript II in the first-strand cDNA synthesis 

reaction.  Following RNase H-mediated second-strand cDNA synthesis, the double-

stranded cDNAs were purified with a GeneChip sample clean-up module and served as 

templates in the generation of complementary RNAs (cRNAs) by an in vitro transcription 

(IVT) reaction.  The biotinylated cRNAs were then cleaned up, fragmented, and 

hybridized to the mouse expression arrays at 45°C for 16 h with constant rotation at 60 

rpm.  The microarrays were then washed and stained on an Affymetrix fluidics station 

and scanned on Affymetrix 3000 scanner. The images were processed to collect raw data 

(.CEL and .CHP files) with the GeneChip Operating Software (GCOS).  
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Microarray Data Analysis:   The Affymetrix CEL files were imported into 

GeneSpring 7.3  and normalized by the GC-Robust Multichip Average (GC-RMA) 

method.  The data was normalized to the 50th percentile of the measurements taken from  

 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.1.  RNA quality for samples submitted for microarray analysis.  The 
integrity of total RNA for each sample was assessed using an Agilent 2100 Bioanalyzer 
and RNA 6000 Nano Lab Chip.  Shown in (a) is a representative electropherogram.  The 
18S and 28S peaks are strong and distinct, indicating intact RNA.  Shown in (b) is the gel 
image of all twelve samples.  RNA samples were all of high quality with 260/280 ratios 
between 1.8 and 2.0, RNA Integrity Number (RIN) values of 10, and 28S:18S ratios of  
1.5 and higher. 
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the chip to reduce chip-wide variations in intensity.  Each gene was normalized to the 

average measurement of the gene throughout the experiment to enable comparison of 

relative changes in gene expression levels between different conditions. We removed 

genes with absent signals in all arrays and then computed the fold change (O/L) between 

oscillatory shear (O) and laminar shear (L) for each batch.  The average fold change for 

each gene in each cell type, either MAE-WT or MAE-p47, was calculated.  Statistical 

significance of the average fold change was calculated using a two-tailed t-test.  Genes 

were filtered out that had p < 0.03.  The remaining genes were filtered by fold change.  

We included genes that were downregulated < 0.66-fold or upregulated > 1.52-fold.  This 

is schematically described in Figure 4.2.     

Genes identified by GeneSpring were uploaded into the Ingenuity Pathways 

Analysis tool as well as GOMiner to further analyze the gene ontology, including 

biological processes, cellular components, molecular functions and genetic networks and 

signaling pathways.     

 

GEDI Analysis 

Expression fold changes (O/L) for each batch of cells were loaded into the Gene 

Expression Dynamics Inspector (GEDI).  After organization by a self-organizing map 

(SOM) algorthim, expression fold changes were averaged for each cell type and 

represented graphically in mosaics.   

 

Quantitative  PCR 

Four micrograms of RNA from each sample were used in a reverse-transcriptase 

reaction with Superscript II (Invitrogen).  The single-stranded cDNA was then purified 

using Micro-Biospin 30 chromatography columns (Bio-Rad).  cDNA was stored at -20°C 

until further use.   
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Quantitative PCR (qPCR), or “real-time” PCR, was carried out for several genes.  

Primer sequences are shown in Table 5.1.  Standards for each gene of interest were 

generated using conventional PCR.  PCR products were separated on and extracted from 

an agarose gel using a Qiaquick gel extraction kit (Qiagen).  Pure cDNA was eluted and 

quantified, and standards of known concentrations were generated.  qPCR was conducted 

using standards and cDNA from samples (in triplicate) on a Roche LightCycler 2 real-

time PCR machine.  mRNA copy numbers were determined based on standard curves 

generated with murine experimental templates and normalized to GAPDH.   

 

Table 5.1 Primer Sequences for qPCR 

Gene Forward Reverse 

 eNOS GGCTTCAGGAAGTGGAGGCTGAGGT CTGCTGCCTATAGCCCGCATAGCGTAT

 Klf2 CCAACTGCGGCAAGACCTAC AGTCGACCCAGGCTACATGTG 

 Jam2 GGGTCGGAGTGTCTCCTTTG ACGATATTTCCCCGCATCAC 

 Bmpr2 GGGAGAGAAACAAGTCTGTGAGC AAGCAGACAGGGGTTGGCCC 

 Bmp4 CTGCGGGACTTCGAGGCGACACTTCT TCTTCCTCCTCCTCCTCCCCAGACTG 

 Ang2 AGATCCAACAGAATGTGGTGC TGTTGACGGTCTCCATTAGG 

 GAPDH TGCACCACCAACTGCTTAG GATGCAGGGATGATGTTC 

 

Immunoblotting 

Cells were rinsed in ice-cold PBS and lysed in RIPA buffer containing 50 mM 

Tris-HCl (pH 7.4), 1% NP-40, 0.25% sodium deoxycholate, 150 mM sodium chloride, 1 

mM EDTA, 30 mM sodium fluoride, 40 mM ß-glycerophosphate, 10 mM sodium 

pyrophosphate, 2 mM sodium orthovanadate, 1 mM phenylmethylsulfonylfluoride 

(PMSF), and protease inhibitors (Roche).  Lysates were further homogenized by brief 

ultrasonication on ice.  Samples were centrifuged at 10,000 rpm for 10 minutes to pellet 

DNA and debris.  The supernatant was collected and protein content was determined 

using a modified Lowry protein assay.  Samples were mixed with Laemmeli buffer and 
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boiled for 5-10 minutes prior to use.  Aliquots of cell lysate were separated on SDS-

PAGE gels.  The proteins were transferred to a polyvinylidine difluoride (PVDF) 

membrane (Millipore).  The membranes were probed with antibodies specific to Klf2, 

total eNOS (1:1000, BD Transduction), phospho-eNOS (Ser1177) (1:1000, Cell 

Signaling), Bmpr2 (1:1000, BD Transduction), Bmp4 (1:1000, Santa Cruz) or total actin 

(1:5000, Santa Cruz) overnight at 4°C.  The membranes were washed and then incubated 

with secondary antibodies for 2 hours at room temperature before chemiluminescent 

detection:  ALP-conjugated goat anti-rabbit (1:3000, Bio-Rad), ALP-conjugated rabbit 

anti-mouse (1:3000, Bio-Rad), or ALP-conjugated rabbit anti-goat (1:5000, Bio-Rad). 

 

Partial Ligation Model 

 Wild-type (C57Bl/6) and p47phox-/- mice were bred and housed according to 

standard IACUC protocols.  Partial ligation of only the left carotid was performed on 

each experimental animal.  The external carotid, internal carotid, and occipital arteries 

were ligated, leaving only the superior thyroid artery patent.  One day following this 

procedure, animals were sacrificed by CO2 asphyxiation.  The vasculature was perfused 

and fixed with formalin.  Aortas were excised and incubated with a primary antibody 

toward Bmp4 and then appropriate secondary antibodies.  Fluorescent en face images 

were taken using a Zeiss LSM 510 confocal microscope. 



www.manaraa.com

 51

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4.2.  Schematic of gene expression analysis. 
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Results 

 

Murine Aortic Endothelial Cells Align in the Direction of Flow 

  As described in the introductory chapter, the Reynolds-like number and shear 

stress values are two important parameters that characterize the flow environment with 

this model.  We typically use a cone-and-plate apparatus equipped for 10-cm culture 

dishes.  Shown in Figure 4.3 are typical values for both unidirectional flow and 

oscillatory flow in this system.  As noted before, the Reynolds-like parameter, shown in 

(a), varies radially.  While towards the outer portion of the plate, we show only that R < 1 

for laminar flow, our experimental observations that endothelial cells continue to align 

towards the outer edge of the cone support the assumption that viscous forces are still 

dominant and in an azimuthal direction.  Shear stress also varies radially, as depicted in 

(b).  In unidirectional laminar flow, the majority of cells see a physiologic level of shear 

stress of 15-20 dyn/cm2.  In oscillatory flow, most cells see a maximum shear stress of 5 

dyn/cm2 during each 1 Hz cycle.  

It is important to note that the oscillatory flow is also laminar.  As you can see, at 

the outer edge of the plate, the Reynolds parameter is an order of magnitude less than 1, 

indicating that the viscous forces are dominating and there is little if any secondary flow.  

Hence, this flow can be considered laminar.  This is supported by the observation that 

after adding a drop of India ink to the shear fluid, the ink maintained a circumferential 

path and did not disperse, as it would be prone to doing under less laminar and more 

turbulent conditions (data not shown). 

In order to accommodate the small MAEC populations, we used 35-mm dishes to 

shear these cells.  In order to do this, we had to find a way to scale down our typical 

cone-and-plate system.  To achieve the same level of shear stress in smaller dishes, we 

needed to increase the rotational velocity of the cones; however, there is a limit to how 

fast we can rotate the cones due to not only possible secondary flows as our Reynolds  
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Shear Stress Varies in the Radial Direction
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Figure 4.3.  Reynolds-like parameter and shear stress distribution in a 10-cm cone-
and-plate apparatus.  (a) Reynolds-like parameter, an indicator of the relative 
dominance of viscous forces, varies along the radius and can be calculated from the 
media’s viscosity (µ), the angular velocity (ω), cone angle (α) and radius (r).  Values 
typically used by us are boxed.  (b) Shear stress varies along the radius and can be 
calculated from the media’s viscosity (µ), the angular velocity (ω), cone angle (α), gap 
height (h), and radius (r).  Values typically used by us are boxed.  
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Variation in Viscosity with Addition of Hyskon
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Figure 4.4.  Addition of Hyskon increases the viscosity of shear media.  Varying 
percentages of Hyskon were added to shear media and the viscosity of each solution was  
measured.   (Contributed by Sarah E. Coleman) 
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parameter increases, but also practical reasons such as media evaporation.  Our other 

option was to increase the viscosity of the shear media.  Hyskon, a solution of 32% 

dextran-70 in 10% dextrose, has been used previously to do this.  As shown in Figure 4.4, 

Hyskon increases the viscosity of the shear media significantly.  We chose to use 5% 

(v/v) Hyskon which increased the viscosity of the shear media by roughly 50%. 

  Shown in Figure 4.5 are values for both unidirectional flow and oscillatory flow 

in the 35-mm system.  As noted before, the Reynolds-like parameter, shown in (a), varies 

radially and is much less than 1 for both types of flow, indicating the predominance of 

viscous forces in the azimuthal direction.  Shear stress also varies radially, as depicted in 

(b).  In unidirectional laminar flow, the majority of cells see a physiologic level of shear 

stress of 15-20 dyn/cm2.  In oscillatory flow, most cells see a maximum shear stress of 5 

dyn/cm2 during each 1 Hz cycle.  

To validate the use of the 35-mm system, we looked at both cell morphology and 

protein expression of HUVEC which are widely used in shear stress studies.  Endothelial 

cells characteristically align in the direction of flow.  As shown in 4.6(a), a typical 

cobblestone pattern can be seen in the static and oscillatory shear conditions for both the 

10-cm and 35-mm systems.  Under laminar shear, the cells aligned in the direction of 

flow for both systems.  eNOS is phosphorylated at serine 1177 by laminar shear stress. 

[52]  We detected this phosphorylation by laminar shear stress in both the 10-cm and 35-

mm shear systems, as shown in Figure 4.6(b). 
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Figure 4.5.  Reynolds-like parameter and shear stress distribution in a 35-mm cone-
and-plate apparatus.  (a) Reynolds-like parameter, an indicator of the relative 
dominance of viscous forces, varies along the radius and can be calculated from the 
media’s viscosity (µ), the angular velocity (ω), cone angle (α) and radius (r).  Values 
typically used by us are boxed.  (b) Shear stress varies along the radius and can be 
calculated from the media’s viscosity (µ), the angular velocity (ω), cone angle (α), gap 
height (h), and radius (r).  Values typically used by us are boxed.  
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Figure 4.6.  HUVEC respond to laminar shear in both 10-cm and 35-mm cone-and-
plate systems.  (a) HUVEC were grown to confluent monolayers in either 10-cm or  35-
mm culture dishes.  They were then exposed to either static conditions (ST), 
unidirectional laminar shear (LS), or oscillatory shear (OS) for 24 hours.  5% Hyskon 
was added to the media for cells in 35-mm dishes to achieve an equivalent shear stress 
level.  Following shear exposure, the cells were photographed under a phase contrast 
microscope.  A typical cobblestone pattern can be seen in the static and oscillatory shear 
conditions.  Under laminar shear, however, HUVEC aligned in the direction of flow in 
both the 10-cm and 35-mm dishes.  Furthermore, as shown in (b), the cells eNOS was  
phosphorylated after shear exposure in 35-mm dishes.
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We next exposed both types of LDL-positive primary MAEC, MAE-WT and MAE-p47, 

to shear in the 35-mm system.  Both cell types aligned under laminar shear stress but did 

not align under oscillatory shear stress.  This is shown in Figure 4.7.  Given batch-to-

batch variability in cell purity, samples used in further analyses, including microarray 

analyses, were screened by real-time PCR for down-regulation by OS of Kruppel-like 

factor 2 (Klf2) and eNOS, two well-established shear-sensitive genes. 

We also exposed both types of LDL-positive immortalized MAEC, iMAE-WT 

and iMAE-p47, to shear in the 10-cm system.  Both cell types aligned under laminar 

shear stress but not under oscillatory shear stress, as shown in Figure 4.8. 
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Figure 4.7.  MAEC align in the direction of laminar shear but not oscillatory shear.  MAE-
WT and MAE-p47 were grown to confluence in 35-mm culture dishes.  They were then exposed 
to either laminar shear (LS) or oscillatory (OS) for 24 hours.  5% Hyskon was added to the media 
to achieve average laminar shear stress values of 15-20 dyn/cm2 and oscillatory shear stress  
values of ±5 dyn/cm2.



www.manaraa.com

 60

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.  iMAEC align in the direction of laminar shear but not oscillatory shear.  
iMAE-WT and iMAE-p47 were grown to confluence in 10-cm culture dishes.  They were 
then exposed to either laminar shear (LS) or oscillatory (OS) for 24 hours.  Both cell 
types aligned in the direction of flow with LS but did not align with OS.  
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Shear Stress Alters Global Gene Expression Profiles of MAE-WT and MAE-p47 

To determine which shear responses were p47phox-dependent, we analyzed total 

RNAs obtained from MAE-WT and MAE-p47 that were exposed to LS or OS for 1 day 

each by using Affymetrix microarrays.  In our statistical analysis we used the following 

criteria: p-value < 0.03 and fold change (O/L) ≤ 0.66 or ≥ 1.52.  We determined the 

number of mechanosensitive genes in each cell type, as shown in Figure 4.9, which 

shows the number of genes up- or down-regulated by OS in comparison to LS in MAE-

WT and MAE-p47.    126 genes were down-regulated in only MAE-WT but not MAE-

p47.  211 genes were down-regulated in only MAE-p47 but not MAE-WT.  22 genes 

were down-regulated in both MAE-WT and MAE-p47.  38 genes were up-regulated in 

only MAE-WT but not MAE-p47.  64 genes were up-regulated in only MAE-p47 but not 

MAE-WT.  One gene was up-regulated in both MAE-WT and MAE-p47. 

The Gene Expression Dynamics Inspector (GEDI) was used to analyze the global 

gene expression patterns.  This program uses a self-organizing map (SOM) algorithm to 

identify clusters of genes and to group them into tiles within a mosaic.  We used GEDI to 

analyze gene expression data from MAE-WT and MAE-p47.  The resulting mosaics or 

maps are shown in Figure 4.10.  The map on the left represents gene expression changes 

in MAE-WT.  The map to the right of this represents gene expression changes in MAE-

p47.  There are similar patterns of global gene expression across the mosaics.  However, 

there are distinct areas that are more or less intense in one of the two cell types, indicating 

genes whose shear response may be p47phox-dependent.   

Established genes that were shear-sensitive in MAEC are shown in Tables 5.2 

through 5.4.  Table 5.2 lists genes that were changed by OS significantly in both cell 

types.  Note that one gene, Rest, was changed by OS significantly but in opposite 

directions in MAE-WT and MAE-p47.  Table 5.3 lists genes that were changed by OS 

significantly in only MAE-WT.  Table 5.4 lists genes that were changed by OS 

significantly in only MAE-p47. 
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Figure 4.9.  Genes regulated by OS in MAE-WT and MAE-p47.  Shown above are 
Venn diagrams representing the number of genes changing in response to OS (compared 
to LS).  The top Venn diagram depicts genes that were down-regulated by OS.  126 genes 
were down-regulated in only MAE-WT but not MAE-p47.  211 genes were down-
regulated in only MAE-p47 but not MAE-WT.  22 genes were down-regulated in both 
MAE-WT and MAE-p47.  The bottom Venn diagram depicts genes that were up-
regulated by OS.  38 genes were up-regulated in only MAE-WT but not MAE-p47.  64 
genes were up-regulated in only MAE-p47 but not MAE-WT.  One gene was up-
regulated in both MAE-WT and MAE-p47. 
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Figure 4.10.  GEDI analysis of microarray results.  Expression fold changes (O/L) for each 
batch of cells were loaded into the Gene Expression Dynamics Inspector (GEDI).  After 
organization by a self-organizing map (SOM) algorthim, expression fold changes were averaged 
for each cell type, MAE-WT and MAE-p47.  Shown on the left is the mosaic for MAE-WT.  To 
the right of this is the mosaic for MAE-p47.  Each tile in these mosaics is identical between 
MAE-WT and MAE-p47 and represents a cluster of genes.  The color of each tile indicates the 
average fold change in response to OS, corresponding to the scale to the right of these maps.  To 
the far right of the figure is the gene density map which indicates how many genes are located in 
each tile of the mosaic. 
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Table 5.3.  Genes changing significantly by OS in only MAE-WT

Accession No. Gene Description O/L p-value
NM_013473 annexin A8 (Anxa8) 0.30 0.00
NM_007974 coagulation factor II (thrombin) receptor-like 1 (F2rl1) 0.30 0.00
NM_023653 wingless-related MMTV integration site 2 (Wnt2) 0.36 0.01
NM_007722 chemokine (C-X-C motif) receptor 7 (Cmkor1) 0.38 0.02
NM_198247 SERTA domain containing 4 (Sertad4) 0.39 0.02
NM_010200 fibroblast growth factor 13 (Fgf13) 0.41 0.01
NM_026639 ADP-ribosyltransferase 4 (Art4) 0.43 0.00
NM_010929 Notch gene homolog 4 (Drosophila) (Notch4) 0.44 0.00
NM_021389 SH3-domain kinase binding protein 1 (Sh3kbp1) 0.45 0.00
NM_023844 junction adhesion molecule 2 (Jam2) 0.45 0.01
NM_007743 collagen, type I, alpha 2 (Col1a2) 0.46 0.03
NM_010217 connective tissue growth factor (Ctgf) 0.46 0.01
NM_007389 cholinergic receptor, nicotinic, alpha polypeptide 1 (Chrna1) 0.47 0.00
NM_007626 chromobox homolog 5 (Drosophila HP1a) (Cbx5) 0.48 0.00
NM_028712 RAP2B, member of RAS oncogene family (Rap2b) 0.49 0.01
NM_011782 a disintegrin-like and metallopeptidase with thrombospondin type 1 motif, 5 (Adamts5) 0.49 0.01
NM_145962 pantothenate kinase 3 (Pank3) 0.49 0.02
NM_007735 collagen, type IV, alpha 4 (Col4a4) 0.50 0.03
NM_010728 lysyl oxidase (Lox) 0.50 0.00
NM_013496 cellular retinoic acid binding protein I (Crabp1) 0.50 0.02
NM_054043 Musashi homolog 2 (Drosophila) (Msi2) 0.50 0.01
NM_010476 hydroxysteroid (17-beta) dehydrogenase 7 (Hsd17b7) 0.51 0.01
NM_001043355 /microtubule-associated protein 6 (Mtap6) 0.51 0.00
NM_054044 G protein-coupled receptor 124 (Gpr124) 0.51 0.01
NM_145611 ankyrin repeat domain 25 (Ankrd25) 0.52 0.01
NM_015776 microfibrillar associated protein 5 (Mfap5) 0.52 0.00
NM_010637 Kruppel-like factor 4 (gut) (Klf4) 0.52 0.01
NM_008441 kinesin family member 1B (Kif1b) 0.53 0.01
NM_023279 tubulin, beta 3 (Tubb3) 0.53 0.01
NM_130450 ELOVL family member 6, elongation of long chain fatty acids (yeast) (Elovl6) 0.53 0.02
NM_054042 CD248 antigen, endosialin (Cd248) 0.53 0.00
NM_145360 isopentenyl-diphosphate delta isomerase (Idi1) 0.53 0.02
NM_009338 acetyl-Coenzyme A acetyltransferase 2 (Acat2) 0.54 0.02
NM_026784 phosphomevalonate kinase (Pmvk) 0.54 0.00
NM_019552 ATP-binding cassette, sub-family B (MDR/TAP), member 10 (Abcb10) 0.54 0.01
XM_619639 tensin 1 (Tns1) 0.55 0.00
XM_001004940 ATP-binding cassette, sub-family A (ABC1), member 13 (Abca13) 0.55 0.01
NM_026772 CDC42 effector protein (Rho GTPase binding) 2 (Cdc42ep2) 0.55 0.01
NM_146006 Lanosterol synthase (Lss) 0.55 0.03
NM_010516 cysteine rich protein 61 (Cyr61) 0.56 0.01
NM_010941 NAD(P) dependent steroid dehydrogenase-like (Nsdhl) 0.56 0.02
NM_007477 ADP-ribosylation factor 2 (Arf2) 0.56 0.00
NM_001033713 similar to Myocyte enhancer factor 2A (Mef2a) 0.56 0.01
NM_026743 tetraspanin 11 (Tspan11) 0.56 0.01
NM_026416 S100 calcium binding protein A16 (S100a16) 0.57 0.00
NM_009260 spectrin beta 2 (Spnb2) 0.57 0.01
NM_020010 cytochrome P450, family 51 (Cyp51) 0.57 0.01
NM_173440 nuclear receptor interacting protein 1 (Nrip1) 0.57 0.01
NM_027164 leucine rich repeat containing 27 (Lrrc27) 0.58 0.00
NM_145942 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (Hmgcs1) 0.58 0.03
NM_015800 cysteine rich transmembrane BMP regulator 1 (chordin like) (Crim1) 0.58 0.01
NM_028778 NUAK family, SNF1-like kinase, 2 (Nuak2) 0.58 0.01
NM_010448 Alanine-glyoxylate aminotransferase 2-like 2 (Hnrpab) 0.58 0.03
NM_010700 low density lipoprotein receptor (Ldlr) 0.58 0.02
NM_008433 potassium intermediate/small conductance calcium-activated channel, subfamily N, member 4 (Kc 0.58 0.03
NM_138741 serum deprivation response (Sdpr) 0.58 0.00
NM_009338 acetyl-Coenzyme A acetyltransferase 2 (Acat2) 0.59 0.02
NM_019819 dual specificity phosphatase 14 (Dusp14) 0.59 0.01
NM_013668 jumonji, AT rich interactive domain 1C (Rbp2 like) (Jarid1c) 0.59 0.02
NM_007496 zinc finger homeobox 3 (Atbf1) 0.59 0.00
NM_172769 sterol-C5-desaturase (fungal ERG3, delta-5-desaturase) homolog (S. cerevisae) (Sc5d) 0.59 0.02
NM_178615 RGM domain family, member B (Rgmb) 0.59 0.03
NM_029569 ankyrin repeat and SOCs box-containing protein 5 (Asb5) 0.59 0.02
NM_007715 circadian locomoter output cycles kaput (Clock) 0.59 0.01
NM_133774 StAR-related lipid transfer (START) domain containing 4 (Stard4) 0.59 0.03
NM_009154 semaphorin 5A (Sema5a) 0.59 0.00
NM_007413 adenosine A2b receptor (Adora2b) 0.59 0.01
NM_008396 integrin alpha 2 (Itga2) 0.60 0.02
NM_019827 glycogen synthase kinase 3 beta (Gsk3b) 0.60 0.00
NM_022023 glia maturation factor, beta (Gmfb) 0.60 0.03
NM_011052 programmed cell death 6 interacting protein (Pdcd6ip) 0.60 0.01

MAE-WT
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Table 5.3.  continued

Accession No. Gene Description O/L p-value
NM_007896 microtubule-associated protein, RP/EB family, member 1 (Mapre1) 0.60 0.03
NM_008813 ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1) 0.60 0.03
NM_001039373 mature T-cell proliferation 1 (Mtcp1) 0.60 0.00
NM_007841 DEAD (Asp-Glu-Ala-Asp) box polypeptide 6 (Ddx6) 0.61 0.03
XM_001000931 ring finger and CCCH-type zinc finger domains 2 (Mnab) 0.61 0.00
NM_010284 growth hormone receptor (Ghr) 0.61 0.00
NM_028870 clathrin, light polypeptide (Cltb) 0.61 0.00
NM_019765 CAP-GLY domain containing linker protein 1 (Rsn) 0.61 0.02
NM_021881 quaking (Qk) 0.62 0.00
NM_172266 lysophosphatidylglycerol acyltransferase 1 (Lpgat1) 0.62 0.02
NM_001025372 adenylate cyclase activating polypeptide 1 receptor 1 (Adcyap1r1) 0.62 0.01
NM_009128 stearoyl-Coenzyme A desaturase 2 (Scd2) 0.62 0.00
NM_177282 microtubule associated monoxygenase, calponin and LIM domain containing 2 (Mical2) 0.62 0.01
NM_013635 synaptophysin-like protein (Sypl) 0.62 0.01
NM_009616 a disintegrin and metallopeptidase domain 19 (Adam19) 0.62 0.01
NM_029891 NF-kappaB repressing factor (Nkrf) 0.62 0.02
NM_028493 Rho-related BTB domain containing 3 (Rhobtb3) 0.62 0.02
NM_019978 doublecortin-like kinase 1 (Dcamkl1) 0.62 0.01
NM_009457 ubiquitin-like modifier activating enzyme 1 (Ube1x) 0.62 0.01
NM_146001 huntingtin interacting protein 1 (Hip1) 0.62 0.01
NM_146191 leucine-rich repeat kinase 1 (Lrrk1) 0.62 0.03
NM_015771 large tumor suppressor 2 (Lats2) 0.62 0.00
NM_025629 ADAMTS-like 5 (Adamtsl5) 0.63 0.00
NM_133656 v-crk sarcoma virus CT10 oncogene homolog (avian) (Crk) 0.63 0.03
NM_028454 transmembrane 7 superfamily member 2 (Tm7sf2) 0.63 0.00
NM_028785 dedicator of cytokinesis 8 (Dock8) 0.63 0.01
NM_024436 RAB22A, member RAS oncogene family (Rab22a) 0.64 0.00
NM_022410 myosin, heavy polypeptide 9, non-muscle (Myh9) 0.64 0.01
NM_144530 zinc finger CCCH type containing 11A (Zc3h11a) 0.64 0.02
NM_016780 integrin beta 3 (Itgb3) 0.64 0.00
NM_018807 pleiomorphic adenoma gene-like 2 (Plagl2) 0.64 0.01
NM_001025163 zinc finger protein 78 (Zfp78) 0.64 0.01
NM_010124 eukaryotic translation initiation factor 4E binding protein 2 (Eif4ebp2) 0.64 0.01
NM_198702 latrophilin 3 (Lphn3) 0.64 0.03
NM_001013833 protein kinase, cGMP-dependent, type I (Prkg1) 0.65 0.00
NM_199476 ribonucleotide reductase M2 B (TP53 inducible) (Rrm2b) 0.65 0.01
XM_283153 polymerase (RNA) III (DNA directed) polypeptide G (Polr3g) 0.65 0.00
NM_029810 5'-nucleotidase, cytosolic II (Nt5c2) 0.65 0.02
NM_198023 REST corepressor 1 (Rcor1) 0.65 0.02
NM_008453 Kruppel-like factor 3 (Klf3) 0.65 0.01
NM_145979 chromodomain helicase DNA binding protein 4 (Chd4) 0.65 0.03
NM_027504 PR domain containing 16 (Prdm16) 0.65 0.01
NM_013720 MAX gene associated (Mga) 0.65 0.00
NM_030249 CTTNBP2 N-terminal like (Cttnbp2nl) 0.65 0.00
NM_007561 bone morphogenic protein receptor, type II (serine/threonine kinase) (Bmpr2) 0.65 0.00
NM_010271 glycerol-3-phosphate dehydrogenase 1 (soluble) (Gpd1) 0.66 0.00
NM_001039179 bicaudal D homolog 2 (Drosophila) (Bicd2) 0.66 0.01
NM_019699 fatty acid desaturase 2 (Fads2) 0.66 0.03
NM_010129 epithelial membrane protein 3 (Emp3) 0.66 0.00
NM_207659 hook homolog 3 (Drosophila) (Hook3) 0.66 0.00
NM_023233 tripartite motif protein 13 (Trim13) 0.66 0.02
NM_009730 attractin (Atrn) 0.66 0.01
NM_153143 potassium channel tetramerisation domain containing 11 (Kctd11) 0.66 0.03
NM_145624 zinc finger protein 709 (Zfp709) 0.66 0.00
NM_177806 PRP39 pre-mRNA processing factor 39 homolog (yeast) (Prpf39) 1.53 0.03
NM_026573 UPF3 regulator of nonsense transcripts homolog B (yeast) (Upf3b) 1.53 0.03
NM_172668 low density lipoprotein receptor-related protein 4 (Lrp4) 1.53 0.03
NM_030714 deltex 3 homolog (Drosophila) (Dtx3) 1.53 0.01
NM_001039515 ADP-ribosylation factor-like 4A (Arl4a) 1.54 0.01
NM_177368 transmembrane and tetratricopeptide repeat containing 2 (Tmtc2) 1.55 0.01
XM_133655 autophagy related 16 like 2 (S. cerevisiae) (Atg16l2) 1.56 0.03
NM_029688 sulfiredoxin 1 homolog (S. cerevisiae) (Srxn1) 1.58 0.03
NM_001033954 calcitonin/calcitonin-related polypeptide, alpha (Calca) 1.59 0.03
NM_028002 dihydrouridine synthase 4-like (S. cerevisiae) (Dus4l) 1.61 0.01
 /// NM_133723 aspartate-beta-hydroxylase (Asph) 1.61 0.01
NM_011158 protein kinase, cAMP dependent regulatory, type II beta (Prkar2b) 1.61 0.01
NM_177462 zinc finger, MYM-type 6 (Zmym6) 1.62 0.02
NM_011665 ubiquitin-conjugating enzyme E2I 1.62 0.00
NM_013931 mitogen-activated protein kinase 8 interacting protein 3 (Mapk8ip3) 1.63 0.03
NM_175121 solute carrier family 38, member 2 (Slc38a2) 1.64 0.01
NM_027184 inositol polyphosphate multikinase (Ipmk) 1.64 0.00

MAE-WT
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Table 5.3.  continued

Accession No. Gene Description O/L p-value
NM_009863 cell division cycle 7 (S. cerevisiae) (Cdc7) 1.66 0.00
NM_008902 placental protein 11 related (Pp11r) 1.70 0.00
NM_145429 arrestin, beta 2 (Arrb2) 1.72 0.03
NM_011229 RAB5B, member RAS oncogene family (Rab5b) 1.74 0.03
NM_181391 Coiled-coil-helix-coiled-coil-helix domain containing 7 (Chchd7) 1.75 0.02
NM_027057 WD repeat and FYVE domain containing 1 (Wdfy1) 1.76 0.01
NM_018881 flavin containing monooxygenase 2 (Fmo2) 1.79 0.01
NM_030203 TSPY-like 4 (Tspyl4) 1.82 0.02
NM_009458 ubiquitin-conjugating enzyme E2B, RAD6 homology (S. cerevisiae) (Ube2b) 1.83 0.03
NM_010724 proteasome subunit, beta type 8 (large multifunctional peptidase 7) (Psmb8) 1.84 0.02
NM_026574 INO80 complex homolog 1 (S. cerevisiae) (Inoc1) 1.86 0.03
NM_016906 Sec61 alpha 1 subunit (S. cerevisiae) (Sec61a1) 1.90 0.03
NM_020271 pyridoxal (pyridoxine, vitamin B6) phosphatase (Pdxp) 1.92 0.00
NM_001033178 transmembrane protein 181 (Tmem181) (Gpr178) 1.94 0.00
XM_487363 filamin, beta (Flnb) 1.97 0.02
NM_019926 X-linked myotubular myopathy gene 1 (Mtm1) 1.99 0.03
NM_001040686 zinc finger protein 692 (Zfp692) 2.05 0.02
NM_053177 mucolipin 1 (Mcoln1) 2.08 0.02
NM_019511 receptor (calcitonin) activity modifying protein 3 (Ramp3) 2.10 0.03
NM_011018 sequestosome 1 (Sqstm1) 2.33 0.03
NM_178697 chloride channel calcium activated 5 (Clca5) 2.35 0.01
NM_009655 activated leukocyte cell adhesion molecule (Alcam) 2.97 0.03

MAE-WT
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Table 5.4.  Genes changing significantly by OS in only MAE-p47

Accession No. Gene Description O/L p-value
NM_028122 solute carrier family 14 (urea transporter), member 1 (Slc14a1) 0.27 0.00
NM_019867 neuronal guanine nucleotide exchange factor (Ngef) 0.33 0.00
NM_021367 thymic stromal lymphopoietin (Tslp) 0.35 0.00
NM_008940 kallikrein related-peptidase 8 (Klk8) 0.35 0.00
NM_011990 solute carrier family 7 (cationic amino acid transporter, y+ system), member 11 (Slc7a11) 0.35 0.00
NM_010112 Embryonal Fyn-associated substrate (Efs) 0.36 0.01
NM_008115 glial cell line derived neurotrophic factor family receptor alpha 2 (Gfra2) 0.37 0.01
NM_011146 peroxisome proliferator activated receptor gamma (Pparg) 0.37 0.00
NM_008397 integrin alpha 6 (Itga6) 0.37 0.01
NM_008706 NAD(P)H dehydrogenase, quinone 1 (Nqo1) 0.39 0.01
NM_177794 transmembrane protein 26 (Tmem26) 0.39 0.00
NM_153546 membrane bound O-acyltransferase domain containing 1 (Mboat1) 0.40 0.00
NM_009510 ezrin /// hypothetical protein LOC100044177 (Vil2) 0.40 0.00
NM_173731 3-hydroxymethyl-3-methylglutaryl-Coenzyme A lyase-like 1 (Hmgcll1) 0.41 0.00
NM_009912 chemokine (C-C motif) receptor 1 (Ccr1) 0.42 0.00
NM_001025602 interleukin 1 receptor-like 1 (Il1rl1) 0.42 0.00
NM_026993 dimethylarginine dimethylaminohydrolase 1 (Ddah1) 0.42 0.01
NM_001033336 ATP-binding cassette, sub-family C (CFTR/MRP), member 4 (Abcc4) 0.43 0.00
NM_009112 S100 calcium binding protein A10 (calpactin) (S100a10) 0.43 0.00
NM_008576 ATP-binding cassette, sub-family C (CFTR/MRP), member 1 (Abcc1) 0.43 0.01
NM_011213 protein tyrosine phosphatase, receptor type, F (Ptprf) 0.44 0.00
NM_008181 glutathione S-transferase, alpha 1 0.44 0.03
NM_023256 keratin 20 (Krt20) 0.44 0.01
NM_177343 calcium/calmodulin-dependent protein kinase ID (Camk1d) 0.45 0.00
NM_001033149 tetratricopeptide repeat domain 9 (Ttc9) 0.45 0.00
NM_010607 potassium channel, subfamily K, member 2 (Kcnk2) 0.45 0.01
NM_013723 podocalyxin-like (Podxl) 0.45 0.03
NM_010577 integrin alpha 5 (fibronectin receptor alpha) (Itga5) 0.46 0.00
NM_010403 hydroxyacid oxidase 1, liver (Hao1) 0.47 0.00
NM_172621 chloride intracellular channel 5 (Clic5) 0.47 0.00
NM_010234 FBJ osteosarcoma oncogene (Fos) 0.48 0.01
NM_011807 discs, large homolog 2 (Drosophila) (Dlgh2) 0.48 0.02
NM_016969 myeloid-associated differentiation marker (Myadm) 0.49 0.03
NM_016719 growth factor receptor bound protein 14 (Grb14) 0.50 0.00
NM_001038621 RAB GTPase activating protein 1-like (Rabgap1l) 0.51 0.00
XM_355205 Ras association (RalGDS/AF-6) and pleckstrin homology domains 1 (Raph1) 0.51 0.00
XM_111244 cerebellar degeneration-related protein 2-like (Cdr2l) 0.51 0.01
NM_023117 cell division cycle 25 homolog B (S. pombe) (Cdc25b) 0.51 0.01
XM_001000829 tetratricopeptide repeat, ankyrin repeat and coiled-coil containing 2 (Tanc2) 0.51 0.02
NM_033444 Chloride intracellular channel 1 (Clic1) 0.51 0.02
NM_001033406 mutated in colorectal cancers (Mcc) 0.51 0.00
NM_031999 G protein-coupled receptor 137B (Gpr137b) 0.51 0.02
NM_153552 THO complex 1 (Thoc1) 0.51 0.03
NM_011518 spleen tyrosine kinase (Syk) 0.52 0.03
NM_025303 staufen (RNA binding protein) homolog 2 (Drosophila) (Stau2) 0.52 0.00
NM_018764 protocadherin 7 (Pcdh7) 0.52 0.02
NM_026647 zinc finger, DHHC domain containing 21 (Zdhhc21) 0.52 0.03
NM_178685 protocadherin 20 (Pcdh20) 0.52 0.01
XM_001000944 ATPase type 13A3 (Atp13a3) 0.52 0.03
NM_010617 kinesin family member 13A (Kif13a) 0.53 0.03
NM_029879 Regulator of G-protein signalling 7 binding protein (D13Bwg1146e) 0.53 0.00
NM_175502 transmembrane protein 74 (Tmem74) 0.53 0.01
NM_008967 prostaglandin I receptor (IP) (Ptgir) 0.53 0.03
NM_029595 phosphatidylethanolamine binding protein 2 (Pbp2) 0.53 0.03
NM_183315 cortexin 1 (Ctxn1) 0.53 0.01
NM_198114 diacylglycerol lipase, alpha (Nt5dc3) 0.53 0.00
XM_485383 protein tyrosine phosphatase, non-receptor type 3 (Ptpn3) 0.53 0.01
XM_001003344 protocadherin 9 (Pcdh9) 0.54 0.03
NM_008924 protein kinase, cAMP dependent regulatory, type II alpha (Prkar2a) 0.54 0.01
NM_178644 OAF homolog (Drosophila) (D9Ucla1) 0.54 0.00
NM_001003719 GTPase activating RANGAP domain-like 1 (Garnl1) 0.54 0.00
NM_133955 ras homolog gene family, member U (Rhou) 0.54 0.01
NM_008486 alanyl (membrane) aminopeptidase (Anpep) 0.54 0.00
NM_001024851 ankyrin repeat domain 34 (Ankrd34) 0.55 0.03
NM_016811 diacylglycerol kinase, alpha (Dgka) 0.55 0.00
NM_008708 N-myristoyltransferase 2 (Nmt2) 0.55 0.00
NM_011670 ubiquitin carboxy-terminal hydrolase L1 (Uchl1) 0.55 0.00
NM_009289 STE20-like kinase (yeast) (Slk) 0.55 0.01
NM_013472 annexin A6 (Anxa6) 0.55 0.02
NM_009477 uridine phosphorylase 1 (Upp1) 0.56 0.00
NM_019914 myeloid/lymphoid or mixed-lineage leukemia translocated to 11 (Mllt11) 0.56 0.01
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Table 5.4.  continued

Accession No. Gene Description O/L p-value
NM_153542 leucine rich repeat containing 20 (Lrrc20) 0.56 0.02
NM_026998 sorting nexin 6 (Snx6) 0.56 0.00

mirror-image polydactyly gene 1 homolog (human) (Mipol1) 0.56 0.01
NM_173781 RAB6B, member RAS oncogene family (Rab6b) 0.56 0.01
NM_027641 sperm flagellar 1 (Spef1) 0.56 0.00
NM_007436 aldehyde dehydrogenase family 3, subfamily A1 (Aldh3a1) 0.56 0.03
NM_010664 keratin 18 (Krt18) 0.56 0.02
NM_009254 serine (or cysteine) peptidase inhibitor, clade B, member 6a (Serpinb6a) 0.56 0.00
NM_013871 mitogen-activated protein kinase 12 (Mapk12) 0.56 0.02
NM_021273 creatine kinase, brain (Ckb) 0.56 0.01
NM_001039194 apoptosis-inducing factor, mitochondrion-associated 2 (Amid) 0.56 0.01
NM_011607 tenascin C (Tnc) 0.57 0.00
NM_001001999 glycoprotein Ib, beta polypeptide (Gp1bb) 0.57 0.03
NM_001024716 TRIO and F-actin binding protein (Triobp) 0.57 0.01
NM_011843 membrane bound C2 domain containing protein (Mbc2) 0.57 0.00
NM_007855 twist homolog 2 (Drosophila) (Twist2) 0.57 0.03
NM_008380 inhibin beta-A (Inhba) 0.57 0.00
NM_011535 T-box 3 (Tbx3) 0.58 0.00
NM_011756 zinc finger protein 36 (Zfp36) 0.58 0.00
NM_028030 RNA binding protein with multiple splicing 2 (Rbpms2) 0.58 0.00
NM_008702 nemo like kinase (Nlk) 0.58 0.01
NM_029352 dual specificity phosphatase 9 (Dusp9) 0.58 0.01
NM_001033439 leucine-rich repeats and calponin homology (CH) domain containing 1 (Lrch1) 0.58 0.03
NM_009285 stanniocalcin 1 (Stc1) 0.58 0.01
NM_013813 erythrocyte protein band 4.1-like 3 (Epb4.1l3) 0.58 0.00
XM_897426 rhotekin 2 (Plekhk1) 0.58 0.02
NM_001042513 thioredoxin reductase 1 (Txnrd1) 0.58 0.02
NM_026331 solute carrier family 25, member 37 (Slc25a37) 0.58 0.01
NM_013569 potassium voltage-gated channel, subfamily H (eag-related), member 2 (Kcnh2) 0.59 0.00
NM_021454 CDC42 effector protein (Rho GTPase binding) 5 (Cdc42ep5) 0.59 0.02
NM_007929 epithelial membrane protein 2 (Emp2) 0.59 0.03
NM_008258 hematological and neurological expressed sequence 1 (Hn1) 0.60 0.01
NM_001039103 RAS p21 protein activator 4 (Rasa4) 0.60 0.00
NM_153552 THO complex 1 (Thoc1) 0.60 0.02
NM_007763 cysteine-rich protein 1 (intestinal) (Crip1) 0.60 0.00
NM_016900 caveolin 2 (Cav2) 0.60 0.03
NM_011923 angiopoietin-like 2 (Angptl2) 0.60 0.03
XM_126489 forkhead box K2 (Foxk2) 0.60 0.01
NM_009072 Rho-associated coiled-coil containing protein kinase 2 (Rock2) 0.60 0.00
NM_013641 prostaglandin E receptor 1 (subtype EP1) (Ptger1 ) 0.60 0.00
NM_008851 phosphatidylinositol membrane-associated 1 (Pitpnm1) 0.60 0.00
NM_175274 tweety homolog 3 (Drosophila) (Ttyh3) 0.60 0.00
NM_008113 Rho GDP dissociation inhibitor (GDI) gamma (Arhgdig) 0.60 0.00
NM_153162 thioredoxin reductase 3 (Txnrd3) 0.60 0.03
NM_172684 rosbin, round spermatid basic protein 1 (Rsbn1) 0.60 0.01
NM_017368 CUG triplet repeat, RNA binding protein 1 (Cugbp1) 0.61 0.00
NM_173414 LanC lantibiotic synthetase component C-like 3 (bacterial) (Lancl3) 0.61 0.03
NM_020493 serum response factor (Srf) 0.61 0.02
NM_010344 glutathione reductase 1 (Gsr) 0.61 0.01
NM_134122 nurim (nuclear envelope membrane protein) (Nrm) 0.61 0.02
NM_009047 rad and gem related GTP binding protein 1 (Rem1) 0.61 0.01
NM_001035228 ST3 beta-galactoside alpha-2,3-sialyltransferase 5 (St3gal5) 0.61 0.00
NM_133348 acyl-CoA thioesterase 7 (Acot7) 0.61 0.00
NM_020593 F-box protein 3 (Fbxo3) 0.61 0.00
NM_016856 cleavage and polyadenylation specific factor 2 (Cpsf2) 0.62 0.03
NM_001017968 zinc finger, DHHC domain containing 18 /// similar to ribosomal protein L29 (Zdhhc18) 0.62 0.01
NM_013565 integrin alpha 3 (Itga3) 0.62 0.00
NM_008442 kinesin family member 2A (Kif2a) 0.62 0.00
NM_013476 androgen receptor (Ar) 0.62 0.00
NM_153103 kinesin family member 1C (Kif1c) 0.62 0.00
XM_486103 sorbin and SH3 domain containing 2 (Sorbs2) 0.62 0.01
NM_019654 suppressor of cytokine signaling 5 (Socs5) 0.62 0.00
NM_008761 FXYD domain-containing ion transport regulator 5 (Fxyd5) 0.63 0.02
NM_176832 spire homolog 1 (Drosophila) (Spire1) 0.63 0.01
NM_080448 SLIT-ROBO Rho GTPase activating protein 3 (Srgap3) 0.63 0.00
NM_080553 inositol 1,4,5-triphosphate receptor 3 (Itpr3) 0.63 0.01
NM_001040690 RAP1, GTP-GDP dissociation stimulator 1 (Rap1gds1) 0.63 0.00
NM_008869 phospholipase A2, group IVA (cytosolic, calcium-dependent) (Pla2g4a) 0.63 0.01
NM_138752 pleckstrin homology domain containing, family G (with RhoGef domain) member 2 (Plekhg2) 0.63 0.02
NM_144881 hedgehog acyltransferase (Hhat) 0.63 0.01
NM_001043322 formin 1 (Fmn1) 0.63 0.00
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Table 5.4.  continued

Accession No. Gene Description O/L p-value
NM_080287 engulfment and cell motility 2, ced-12 homolog (C. elegans) (Elmo2) 0.63 0.03
NM_007616 caveolin, caveolae protein 1 (Cav1) 0.63 0.01
XM_485202 zinc finger and BTB domain containing 10 (Zbtb10) 0.63 0.02
NM_025999 ring finger protein 141 (Rnf141) 0.63 0.00
NM_009794 calpain 2 (Capn2) 0.63 0.01
NM_020559 aminolevulinic acid synthase 1 (Alas1) 0.63 0.00
NM_009504 vitamin D receptor (Vdr) 0.63 0.00
NM_013777 aldo-keto reductase family 1, member C12 (Akr1c12) 0.63 0.01
NM_172992 putative homeodomain transcription factor 2 (Phtf2) 0.63 0.01
NM_130863 adrenergic receptor kinase, beta 1 (Adrbk1) 0.63 0.00
NM_021469 dysferlin /// fer-1-like 3, myoferlin (C. elegans) (Dysf /// Fer1l3) 0.63 0.00
XM_908334 ethanolamine kinase 1 (Etnk1) 0.63 0.00
NM_133167 parvin, beta (Parvb) 0.63 0.00
NM_026514 CDC42 effector protein (Rho GTPase binding) 3 (Cdc42ep3) 0.63 0.03
XM_140308 DCP2 decapping enzyme homolog (S. cerevisiae) (Dcp2) 0.64 0.01
NM_026700 dopey family member 2 (Dopey2) 0.64 0.01
NM_011803 Kruppel-like factor 6 (Klf6) 0.64 0.01
NM_198161 basic helix-loop-helix domain containing, class B9 (Bhlhb9) 0.64 0.02
NM_001038642 E26 avian leukemia oncogene 1, 5' domain (Ets1) 0.64 0.02
XM_001002526 interferon regulatory factor 2 binding protein 2 (Irf2bp2) 0.64 0.00
NM_145136 myocardin (Myocd) 0.64 0.00
NM_144513 maternally expressed 3 (Gtl2 /// Lphn1) 0.64 0.01
NM_011212 protein tyrosine phosphatase, receptor type, E (Ptpre) 0.64 0.00
NM_011379 signal-induced proliferation associated gene 1 (Sipa1) 0.64 0.02
NM_011528 transaldolase 1 (Taldo1) 0.64 0.02
NM_021531 coactivator-associated arginine methyltransferase 1 (Carm1) 0.64 0.02
NM_144792 sphingomyelin synthase 1 (Tmem23) 0.64 0.02
NM_022320 G protein-coupled receptor 35 (Gpr35) 0.64 0.01
NM_133198 liver glycogen phosphorylase (Pygl) 0.64 0.00
NM_181821 host cell factor C1 regulator 1 (XPO1-dependent) (Hcfc1r1) 0.64 0.02
NM_030241 SET domain containing (lysine methyltransferase) 8 (Setd8) 0.65 0.01
NM_001040111 centaurin, delta 2 (Centd2) 0.65 0.01
NM_146073 zinc finger, DHHC domain containing 14 (Zdhhc14) 0.65 0.00
NM_175003 expressed sequence AU040829 (AU040829) 0.65 0.01
NR_001592 H19 fetal liver mRNA (H19) 0.65 0.02
NM_010135 enabled homolog (Drosophila) (Enah) 0.65 0.01
NM_019572 histone deacetylase 7A (Hdac7a) 0.65 0.01
NM_001037762 zinc finger, DHHC domain containing 12 (Zdhhc12) 0.65 0.03
NM_008783 RIKEN cDNA 4833414E09 gene (Pbx1) 0.65 0.00
NM_018736 meiotic recombination 11 homolog A (S. cerevisiae) (Mre11a) 0.65 0.00
NM_007600 calpain 1 (Capn1) 0.65 0.02
NM_011276 ring finger protein 12 (Rnf12) 0.65 0.02
XM_125637 Rho-related BTB domain containing 1 (Rhobtb1) 0.65 0.03
NM_010305 guanine nucleotide binding protein (G protein), alpha inhibiting 1 (Gnai1) 0.65 0.01
NM_011303 dehydrogenase/reductase (SDR family) member 3 (Dhrs3) 0.65 0.02
NM_026697 RAB14, member RAS oncogene family (Rab14) 0.65 0.01
XM_001001143 SET binding factor 2 (Sbf2) 0.65 0.00
NM_011446 SRY-box containing gene 7 (Sox7) 0.65 0.00
NM_172945 ankyrin repeat domain 13b (Ankrd13b) 0.65 0.02
NM_001012450 ankyrin repeat domain 6 (Ankrd6) 0.65 0.00
NM_007765 collapsin response mediator protein 1 (Crmp1) 0.65 0.02
NM_001002011 lamin A (Lmna) 0.66 0.01
NM_013484 complement component 2 (within H-2S) (C2) 0.66 0.02
NM_181074 leucine rich repeat and Ig domain containing 1 (Lrrn6a) 0.66 0.00
XM_194040 microtubule-associated protein 1 A (Mtap1a) 0.66 0.02
NM_022980 regulator of calcineurin 3 (Dscr1l2) 0.66 0.01
XM_128781 lysocardiolipin acyltransferase (Lycat) 0.66 0.01
NM_016765 dimethylarginine dimethylaminohydrolase 2 (Ddah2) 0.66 0.01
NM_029348 zinc finger and BTB domain containing 4 (Zbtb4) 0.66 0.01
NM_010820 multiple PDZ domain protein (Mpdz) 0.66 0.01
NM_133687 CXXC finger 5 (Cxxc5) 0.66 0.02
XM_001000816 SLIT-ROBO Rho GTPase activating protein 2 (Srgap2) 0.66 0.00
NM_008862 protein kinase inhibitor, alpha (Pkia) 0.66 0.02
NM_001025261 tumor protein D52 (Tpd52) 0.66 0.01
NM_010720 lipase, endothelial (Lipg) 0.66 0.01
NM_011774 solute carrier family 30 (zinc transporter), member 4 (Slc30a4) 0.66 0.00
NM_025569 microsomal glutathione S-transferase 3 (Mgst3) 0.66 0.02
NM_011898 sprouty homolog 4 (Drosophila) (Spry4) 0.66 0.02
NM_001037841 chemokine-like factor (Cklf) 0.66 0.01
NM_023042 RecQ protein-like (Recql) 1.52 0.02
NM_028381 coiled-coil domain containing 94 (Ccdc94) 1.52 0.03
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Table 5.4.  continued

Accession No. Gene Description O/L p-value
NM_013763 transducin (beta)-like 2 (Tbl2) 1.52 0.02
NM_011285 retinitis pigmentosa GTPase regulator (Rpgr) 1.53 0.01
NM_016690 heterogeneous nuclear ribonucleoprotein D-like (Hnrpdl) 1.53 0.01
NM_021326 RB-associated KRAB repressor (Rbak) 1.53 0.03
NM_026494 phosphopantothenoylcysteine synthetase (Ppcs) 1.53 0.02
NM_011937 glucosamine-6-phosphate deaminase 1 (Gnpda1) 1.54 0.02
NM_028923 GLE1 RNA export mediator (yeast) (Gle1l) 1.54 0.01
NM_030684 tripartite motif protein 34 (Trim34) 1.55 0.03
NM_001039388 WD repeat domain 37 (Wdr37) 1.55 0.03
NM_148941 elongation of very long chain fatty acids-like 4 (Elovl4) 1.56 0.03
NM_175009 enhancer of yellow 2 homolog (Drosophila) (Eny2) 1.56 0.02
NM_019823 cytochrome P450, family 2, subfamily d, polypeptide 22 (Cyp2d22) 1.56 0.03
NM_146151 testis-specific kinase 2 (Tesk2) 1.56 0.01
XM_001000094 importin 8 (Ipo8) 1.57 0.01
NM_145353 Yip1 domain family, member 3 (Yipf3) 1.58 0.00
NM_144546 zinc finger protein 119 (Zfp119) 1.59 0.03
NM_001042671 preimplantation protein 4 (Prei4) 1.60 0.01
NM_011704 vanin 1 (Vnn1) 1.60 0.00
NM_009104 ribonucleotide reductase M2 (Rrm2) 1.61 0.00
NM_026162 plexin domain containing 2 (Plxdc2) 1.61 0.00
NM_026554 nuclear cap binding protein subunit 2 (Ncbp2) 1.62 0.03
NM_053196 sideroflexin 2 (Sfxn2) 1.64 0.02
NM_145520 TruB pseudouridine synthase homolog 2 (E. coli) (Trub2) 1.64 0.00
NM_019963 signal transducer and activator of transcription 2 (Stat2) 1.65 0.01
NM_023048 ankyrin repeat and SOCS box-containing protein 4 (Asb4) 1.66 0.01
NM_011511 ATP-binding cassette, sub-family C (CFTR/MRP), member 9 (Abcc9) 1.67 0.03
NM_153543 aldehyde dehydrogenase 1 family, member L2 (Aldh1l2) 1.68 0.00
NM_173762 centromere protein E (Cenpe) 1.70 0.03
NM_207245 cDNA sequence BC066107 (BC066107) 1.73 0.03
NM_010228 FMS-like tyrosine kinase 1 (Flt1) 1.74 0.00
NM_144808 solute carrier family 39 (zinc transporter), member 14 (Slc39a14) 1.75 0.01
NM_178877 Na+/H+ exchanger domain containing 2 (C80638) 1.77 0.02
XM_619244 chromodomain helicase DNA binding protein 8 (Chd8) 1.77 0.00
NM_029665 importin 11 (Ipo11) 1.77 0.03
NM_013852 ATP-binding cassette, sub-family F (GCN20), member 3 (Abcf3) 1.78 0.03
NM_178804 slit homolog 2 (Drosophila) (Slit2) 1.78 0.02
NM_029763 polymerase (RNA) III (DNA directed) polypeptide F (Polr3f) 1.79 0.00
NM_172578 expressed sequence C79407 (C79407) 1.81 0.00
XM_907983 hect domain and RLD 5 (Herc5) 1.81 0.00
NM_030684 Predicted gene, EG667823 (Trim34) 1.82 0.01
NM_001033851 copine VIII (Cpne8) 1.82 0.02
NM_008555 Mannan-binding lectin serine peptidase 1 (Masp1) 1.85 0.01
NM_080857 ankyrin repeat and SOCS box-containing protein 13 (Asb13) 1.85 0.03
NM_013584 leukemia inhibitory factor receptor (Lifr) 1.86 0.01
NM_007691 checkpoint kinase 1 homolog (S. pombe) (Chek1) 1.90 0.01
NM_008977 protein tyrosine phosphatase, non-receptor type 2 (Ptpn2) 1.92 0.01
NM_011117 plectin 1 (Plec1) 1.93 0.03
NM_011150 lectin, galactoside-binding, soluble, 3 binding protein (Lgals3bp) 1.98 0.00
XM_356065 DDHD domain containing 2 (Ddhd2) 2.06 0.03
NM_008796 phosphatidylcholine transfer protein (Pctp) 2.07 0.00
NM_008446 kinesin family member 4 (Kif4) 2.10 0.00
NM_133832 retinol dehydrogenase 10 (all-trans) (Rdh10) 2.13 0.00
NM_172893 poly (ADP-ribose) polymerase family, member 12 (Parp12) 2.28 0.01
XM_891672 peptidylprolyl isomerase (cyclophilin)-like 6 (Ppil6) 2.30 0.01
NM_019440 interferon inducible GTPase 2 (Iigp2) 2.38 0.02
NM_018738 interferon gamma induced GTPase (Igtp) 2.48 0.02
NM_009283 signal transducer and activator of transcription 1 (Stat1) 2.55 0.00
NM_030253 poly (ADP-ribose) polymerase family, member 9 (Parp9) 2.61 0.01
NM_001013371 deltex 3-like (Drosophila) (Dtx3l) 2.67 0.00
NM_009605 adiponectin, C1Q and collagen domain containing (Adipoq) 2.74 0.01
NM_026301 ring finger protein 125 (Rnf125) 3.90 0.03
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Shear Stress-Sensitive Genes Were Grouped by Biologic Function  

Next, we examined which biological responses are regulated by shear stress in 

p47phox-dependent manner in endothelial cells. To this end, we compared the shear-

dependent biological responses in MAE-WT and MAE-p47 cells by using Ingenuity 

Pathways Analysis (IPA) and GOMiner.  IPA identified several significant functional 

categories of shear-sensitive genes in both cell types, as shown in Figure 4.11.  These 

categories included:  cardiovascular disease, cardiovascular system development and 

function, cell death, cellular growth and proliferation, cell morphology, cell signaling, 

and immune response.  As shown in Table 5.5, GOMiner analysis of the microarray 

results of the two cell types identified 6 major biological categories that are pertinent to 

vascular biology and pathophysiology: oxidative stress, cell adhesion, angiogenesis, 

apoptosis, and cell proliferation.     

There were 30 shear-sensitive genes identified in the oxidative stress category.  

These genes appear to be p47phox-dependent since all of them changed significantly in 

only one cell type.    Another category of interest is cell adhesion in which we found 25 

genes.  p47phox-independent genes which changed significantly and in the same way in 

both cell types included Rhob and Edil3.  Other genes, such as CTGF and Alcam may be 

p47phox-dependent since they were down-regulated by OS in only MAE-WT.  Eighteen 

genes were identified as having a function in apoptosis.  Fourteen genes had roles in cell 

proliferation.  Of these genes, the majority of them changed in only one cell type, 

indicating their possible dependence on p47phox and p47phox-based NADPH oxidases. 
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Figure 4.11.  Microarray results were analyzed by Ingenuity Pathways Analysis.  
IPA identified several categories of biological functions represented by the shear- 

 sensitive genes in (a) MAE-WT and (b) MAE-p47. 
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Table 5.5.  Gene Ontology categorization of genes changing significantly by OS in either MAE-WT or MAE-p47

Accession No. Gene Description O/L p-value O/L p-value

Oxidative Stress
NM_010728 lysyl oxidase (Lox) 0.50 0.00 -- --
NM_010476 hydroxysteroid (17-beta) dehydrogenase 7 (Hsd17b7) 0.51 0.01 -- --
NM_010941 NAD(P) dependent steroid dehydrogenase-like (Nsdhl) 0.56 0.02 -- --
NM_020010 cytochrome P450, family 51 (Cyp51) 0.57 0.01 -- --
NM_172769 sterol-C5-desaturase homolog (Sc5d) 0.59 0.02 -- --
NM_009128 stearoyl-Coenzyme A desaturase 2 (Scd2) 0.62 0.00 -- --
NM_177282 microtubule associated monoxygenase, calponin and LIM domain 2 (Mical2) 0.62 0.01 -- --
NM_028454 transmembrane 7 superfamily member 2 (Tm7sf2) 0.63 0.00 -- --
NM_016780 integrin beta 3 (Itgb3) 0.64 0.00 -- --
NM_199476 ribonucleotide reductase M2 B (TP53 inducible) (Rrm2b) 0.65 0.01 -- --
NM_010271 glycerol-3-phosphate dehydrogenase 1 (soluble) (Gpd1) 0.66 0.00 -- --
NM_019699 fatty acid desaturase 2 (Fads2) 0.66 0.03 -- --
NM_029688 sulfiredoxin 1 homolog (S. cerevisiae) (Srxn1) 1.58 0.03 -- --
NM_028002 dihydrouridine synthase 4-like (S. cerevisiae) (Dus4l) 1.61 0.01 -- --
NM_023066 aspartate-beta-hydroxylase (Asph) 1.61 0.01 -- --
NM_018881 flavin containing monooxygenase 2 (Fmo2) 1.79 0.01 -- --
NM_008706 NAD(P)H dehydrogenase, quinone 1 (Nqo1) -- -- 0.39 0.14
NM_010403 hydroxyacid oxidase 1, liver (Hao1) -- -- 0.47 0.07
NM_007436 aldehyde dehydrogenase family 3, subfamily A1 (Aldh3a1) -- -- 0.56 0.14
NM_001042513 thioredoxin reductase 1 (Txnrd1) -- -- 0.58 0.11
NM_153162 thioredoxin reductase 3 (Txnrd3) -- -- 0.60 0.11
NM_010344 glutathione reductase 1 (Gsr) -- -- 0.61 0.08
NM_013777 aldo-keto reductase family 1, member C12 (Akr1c12) -- -- 0.63 0.09
NM_011303 dehydrogenase/reductase (SDR family) member 3 (Dhrs3) -- -- 0.65 0.09
NM_011285 retinitis pigmentosa GTPase regulator (Rpgr) -- -- 1.53 0.13
NM_019823 cytochrome P450, family 2, subfamily d, polypeptide 22 (Cyp2d22) -- -- 1.56 0.17
NM_009104 ribonucleotide reductase M2 (Rrm2) -- -- 1.61 0.06
NM_153543 aldehyde dehydrogenase 1 family, member L2 (Aldh1l2) -- -- 1.68 0.08
NM_011150 lectin, galactoside-binding, soluble, 3 binding protein (Lgals3bp) -- -- 1.98 0.17
NM_133832 retinol dehydrogenase 10 (all-trans) (Rdh10) -- -- 2.13 0.11

Cell Adhesion
NM_007483 ras homolog gene family, member B (Rhob) 0.35 0.00 0.50 0.00
NM_001037987 EGF-like repeats and discoidin I-like domains 3 (Edil3) 0.53 0.00 0.36 0.01
NM_010217 connective tissue growth factor (Ctgf) 0.46 0.01 -- --
NM_007743 collagen, type I, alpha 2 (Col1a2) 0.46 0.03 -- --
NM_007735 collagen, type IV, alpha 4 (Col4a4) 0.50 0.03 -- --
NM_178615 RGM domain family, member B (Rgmb) 0.59 0.03 -- --
NM_008396 integrin alpha 2 (Itga2) 0.60 0.02 -- --
NM_022410 myosin, heavy polypeptide 9, non-muscle (Myh9) 0.64 0.01 -- --
NM_016780 integrin beta 3 (Itgb3) 0.64 0.00 -- --
NM_001033954 calcitonin/calcitonin-related polypeptide, alpha (Calca) 1.59 0.03 -- --
NM_009655 activated leukocyte cell adhesion molecule (Alcam) 2.97 0.03 -- --
NM_010112 Embryonal Fyn-associated substrate (Efs) -- -- 0.36 0.01
NM_008397 integrin alpha 6 (Itga6) -- -- 0.37 0.01
NM_010577 integrin alpha 5 (fibronectin receptor alpha) (Itga5) -- -- 0.46 0.00
NM_011518 spleen tyrosine kinase (Syk) -- -- 0.52 0.03
NM_018764 protocadherin 7 (Pcdh7) -- -- 0.52 0.02
NM_178685 protocadherin 20 (Pcdh20) -- -- 0.52 0.01
XM_001003344 protocadherin 9 (Pcdh9) -- -- 0.54 0.03
NM_011607 tenascin C (Tnc) -- -- 0.57 0.00
NM_013565 integrin alpha 3 (Itga3) -- -- 0.62 0.00
NM_133167 parvin, beta (Parvb) -- -- 0.63 0.00
NR_001592 H19 fetal liver mRNA (H19) -- -- 0.65 0.02
NM_010135 enabled homolog (Drosophila) (Enah) -- -- 0.65 0.01
NM_010820 multiple PDZ domain protein (Mpdz) -- -- 0.66 0.01
NM_146151 testis-specific kinase 2 (Tesk2) -- -- 1.56 0.01

Angiogenesis
NM_007483 ras homolog gene family, member B (Rhob) 0.35 0.00 0.50 0.00
NM_010929 Notch gene homolog 4 (Drosophila) (Notch4) 0.44 0.00 -- --
NM_010217 connective tissue growth factor (Ctgf) 0.46 0.01 -- --
NM_009154 semaphorin 5A (Sema5a) 0.59 0.00 -- --
NM_022410 myosin, heavy polypeptide 9, non-muscle (Myh9) 0.64 0.01 -- --
NM_008486 alanyl (membrane) aminopeptidase (Anpep) -- -- 0.54 0.00
NM_010228 FMS-like tyrosine kinase 1 (Flt1) -- -- 1.74 0.00
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Table 5.5.  continued

Accession No. Gene Description O/L p-value O/L p-value

Apoptosis
NM_007483 ras homolog gene family, member B (Rhob) 0.35 0.00 0.50 0.00
NM_011738 tyrosine 3-monooxygenase (Ywhah) 0.65 0.01 0.64 0.01
NM_021389 SH3-domain kinase binding protein 1 (Sh3kbp1) 0.45 0.00 -- --
XM_619639 tensin 1 (Tns1) 0.55 0.00 -- --
NM_028778 NUAK family, SNF1-like kinase, 2 (Nuak2) 0.58 0.01 -- --
NM_028778 NUAK family, SNF1-like kinase, 2 (Nuak2) 0.58 0.01 -- --
NM_019827 glycogen synthase kinase 3 beta (Gsk3b) 0.60 0.00 -- --
NM_011052 programmed cell death 6 interacting protein (Pdcd6ip) 0.60 0.01 -- --
NM_146001 huntingtin interacting protein 1 (Hip1) 0.62 0.01 -- --
NM_018807 pleiomorphic adenoma gene-like 2 (Plagl2) 0.64 0.01 -- --
NM_011018 sequestosome 1 (Sqstm1) 2.33 0.03 -- --
NM_177343 calcium/calmodulin-dependent protein kinase ID (Camk1d) -- -- 0.45 0.00
NM_153552 THO complex 1 (Thoc1) -- -- 0.51 0.03
NM_009289 STE20-like kinase (yeast) (Slk) -- -- 0.55 0.01
NM_008380 inhibin beta-A (Inhba) -- -- 0.57 0.00
NM_011535 T-box 3 (Tbx3) -- -- 0.58 0.00
NM_080287 engulfment and cell motility 2, ced-12 homolog (C. elegans) (Elmo2) -- -- 0.63 0.03
NM_146151 testis-specific kinase 2 (Tesk2) -- -- 1.56 0.01

Proliferation
NM_007553 bone morphogenetic protein 2 (Bmp2) 0.37 0.01 0.35 0.00
NM_019827 glycogen synthase kinase 3 beta (Gsk3b) 0.60 0.00 -- --
NM_007561 bone morphogenic protein receptor, type II (serine/threonine kinase) (Bmpr2) 0.65 0.00 -- --
NM_011158 protein kinase, cAMP dependent regulatory, type II beta (Prkar2b) 1.61 0.01 -- --
NM_011518 spleen tyrosine kinase (Syk) -- -- 0.52 0.03
NM_011670 ubiquitin carboxy-terminal hydrolase L1 (Uchl1) -- -- 0.55 0.00
NM_011535 T-box 3 (Tbx3) -- -- 0.58 0.00
XM_897426 rhotekin 2 (Plekhk1) -- -- 0.58 0.02
NM_001042513 thioredoxin reductase 1 (Txnrd1) -- -- 0.58 0.02
NM_016900 caveolin 2 (Cav2) -- -- 0.60 0.03
NM_007616 caveolin, caveolae protein 1 (Cav1) -- -- 0.63 0.01
NM_145136 myocardin (Myocd) -- -- 0.64 0.00
NM_008783 RIKEN cDNA 4833414E09 gene (Pbx1) -- -- 0.65 0.00
NM_013584 leukemia inhibitory factor receptor (Lifr) -- -- 1.86 0.01

MAE-WT MAE-p47
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Verification of Microarray Results By Quantitative PCR  

To verify the results of our microarray analyses, we chose genes that either have 

been previously identified as shear-responsive or had potentially interesting roles in 

atherogenesis and appeared to be p47phox-dependent.  We were able to corroborate some 

of our microarray results by quantitative PCR (qPCR) analysis of our primary MAEC 

samples, as shown in Figure 4.12.  We confirmed that Klf2 was dramatically down-

regulated by OS in both MAE-WT and MAE-p47 by both microarray analysis (or gene 

chip) and qPCR.  We also showed that eNOS was down-regulated by OS in both MAE-

WT and MAE-p47, though the microarray fold change was not significant while the 

qPCR results were significant.  Angiopoietin 2 (Ang2) has been shown to be shear-

responsive in other endothelial cells; however, our microarray results and qPCR analysis 

indicate that MAEC are not shear-responsive under our particular in vitro conditions.  

Jam2 was confirmed to be a shear-sensitive gene in only the wild-type cells, being down-

regulated by almost 2-fold in MAE-WT.  This indicates that its shear response may be 

p47phox-dependent.  A similar pattern was found for Bmpr2.  It was significantly down-

regulated by OS in only MAE-WT, indicating that its shear response also may be 

p47phox-dependent. 

 In order to be able to investigate a larger number of genes and determine their 

functional roles, we chose to also use the immortalized MAEC cell lines.  We were able 

to validate some of our microarray results with these cells.  Shown in Figure 4.13 are 

qPCR results using the immortalized cells.  Klf2, as expected, was dramatically down-

regulated by OS in both iMAE-WT and iMAE-p47 by both MA and qPCR.  Also, we 

confirmed the results for junctional adhesion molecule 2 (Jam2).  Jam2 was down-

regulated by OS in iMAE-WT but not in iMAE-p47 which supported the microarray 

results.  This indicates that Jam2 may be shear-sensitive and p47phox-dependent. 
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Verification of Microarray Results by Immunoblotting 

We next validated microarray results of selected genes at the protein level by 

Western blot analysis.  We analyzed protein expression changes for Klf2 and total eNOS.  

As has been reported in other endothelial cells, Klf2 was dramatically down-regulated by 

OS in both iMAE-WT and iMAE-p47.  Total eNOS was also down-regulated by OS in 

both iMAE-WT and iMAE-p47.  While the change was not dramatic, it was consistent.  

We also probed for Bmpr2.  We showed that while OS down-regulated Bmpr2 in iMAE-

WT, it did not change the expression of Bmpr2 in iMAE-p47.  This corroborates the 

mRNA expression changes, as demonstrated in primary MAEC, and further suggests that 

this gene’s shear response is p47phox-dependent.  

 

Bone Morphogenetic Protein 4 

We validated microarray results for Bmp4 at the mRNA levels using both primary 

cells and immortalized cells.  As shown in Figure 4.15(a), microarray analysis suggested 

that Bmp4 mRNA levels did not change in response to OS in either MAE-WT or MAE-

p47.  We validated this with both primary cells and immortalized cells.  However, at the 

protein level, we did see that OS increased the expression of the mature form of Bmp4 by 

Western analysis.  This was true only in iMAE-WT.  Protein expression of Bmp4 did not 

appear to respond to OS in iMAE-p47.  These results are shown in Figure 4.15(b). 

We further used an in vivo partial ligation model to look at Bmp4’s shear 

response.  In this model, the internal carotid, external carotid, and occipital arteries are 

ligated on the left side of the animal only, as illustrated in Figure 4.16(a).  This decreases 

flow and shear stress on the ligated side while increasing flow and shear stress on the 

non-ligated side.  One day following partial ligation, we looked at Bmp4 expression near 

the ligated area where flow was decreased using en face imaging.  As shown in Figure 

4.16(b), Bmp4 protein expression was increased on the ligated, low flow side, in wild-

type animals.  However, no change in Bmp4 expression was observed in p47phox-/- 
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Figure 4.12.  qPCR validation of microarray results using primary MAEC.  Following 
microarray analysis, gene expression changes were validated with primary cell samples for 
several genes, including Klf2, eNOS, Ang2, Jam2, and Bmpr2.  Microarray results are shown 
on the left of each graph and the corresponding quantitative PCR results are shown on the 
right of each graph for both cell types MAE-WT and MAE-p47.  Statistical significance was 
determined by a Student’s t-test where * indicates p-value ≤ 0.05, n = 3-4.
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Figure 4.13.  qPCR validation of microarray results using immortalized MAEC.  
Following microarray analysis, gene expression changes were validated with immortalized 
cell samples for genes, including Klf2 and Jam2.  Microarray results are shown on the left of 
each graph and the corresponding quantitative PCR results are shown on the right of each 
graph.  Statistical significance was determined by a Student’s t-test where * indicates p-value 
≤ 0.05, n = 3-4 for gene chip and n = 6-8 for qPCR.   
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.14.  Protein validation of microarray results using immortalized MAEC.  
(a)  Cell lysates obtained from iMAE-WT and iMAE-p47 exposed to either laminar (LS) 
or oscillatory shear (OS) conditions were analyzed by Western blot using antibodies for 
total eNOS (t-eNOS), Kruppel-like factor 2 (Klf2), and β-actin (used as a loading 
control).  (Contributed by Chih-Wen Ni.)  (b)  Cell lysates obtained from iMAE-WT and 
iMAE-p47 exposed to either LS or OS conditions were analyzed by Western blot using 
antibodies for bone morphogenic receptor 2 (Bmpr2) and β-actin (used as a loading 
control).  (Contributed in part by Dr. HyukSang Kwon.)      
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(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.15.  OS upregulates Bmp4 at the protein level.  Bmp4 mRNA levels were not 
shear-responsive according to the microarray analysis.  This was confirmed in both 
primary cells and immortalized cells, as shown in (a).  However, the mature form of 
Bmp4 is upregulated by OS in iMAE-WT but not in iMAE-p47, as shown by Western 
blot analysis in (b).  (Contributed in part by Chih-Wen Ni.) 
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(a) 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
(b) 

 
Figure 4.16.  Bmp4 
expression in a carotid 
partial ligation model.  Wild-
type and p47phox-/- mice 
underwent partial ligation.  
The external carotid, internal 
carotid, and occipital arteries 
were ligated on the left side 
only.  One day following the 
procedure, the mice were 
euthanized.  The vascular was 
perfused and fixed with 
formalin.  Aortas were 
incubated with an antibody 
towards Bmp4.  En face 
images of the endothelial 
surface upstream but proximal 
to the ligation were taken 
using a Zeiss LSM 510 
confocal microscope.  
Expression of Bmp4 was 
increased on the ligated side, 
or low-flow side, in wild-type 
animals.  This response was 
not observed in p47phox-/- 
animals.  En face images of 
non-ligated sham controls 
were included.  (Contributed 
by Dr. Doug Nam.) 
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animals.  While this needs to be investigated further, these initial results corroborate our 

in vitro data and suggest that Bmp4’s shear response is p47phox-dependent. 

 
 

Discussion 
 

The major and novel finding of this study is the identification of genes that were 

regulated by shear stress in NADPH oxidase-dependent and –independent manners.  

These findings provide us with insights into which mechanosensitive genes are regulated 

by the p47phox-based NADPH oxidases.   

Increased vascular production of ROS, including superoxide and H2O2, 

commonly occurs in hypertension, atherosclerosis, aging, hypercholesterolemia, and 

diabetes. [24, 26, 92]  ROS have been intimately linked to atherogenesis via 

inflammatory responses that result from disturbed flow conditions. [41, 88, 91]  We have 

previously shown that OS stimulates ROS production in endothelial cells, while LS 

reduces ROS compared to static controls.  OS stimulation of ROS leads to ICAM1 

expression and monocyte adhesion, early and critical atherogenic events. [47]  Evidence 

showing a role for p47phox-based NADPH oxidases in OS-induced ROS production and 

inflammatory responses has come from studies using endothelial cells in conjunction 

with the NADPH oxidase inhibitor apocynin or ROS chelators.  

Some shear responses remain unchanged in MAE-p47 cells in comparison to 

MAE-WT.  For example, both cell types show similar cell shape alignment in the 

direction of unidirectional LS, while both cell types do not align in response to bi-

directional OS (Figures 4.7 and 4.8).   While many of the shear-sensitive genes identified 

in MAE-WT showed different trends in MAE-p47 cells, 22 genes changed the same in 

both cell types, suggesting that either these genes are upstream of the p47phox-based 

NADPH oxidases or they are involved in an entirely independent pathway.  One example 

of a p47phox-independent gene is Klf2.  Klf2 is a transcription factor that has been 
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shown to be a shear-sensitive gene.  It is upregulated by laminar shear and is thought to 

have a protective role in atherogenesis.  We showed that Klf2 is shear-sensitive but 

p47phox-independent.  It was significantly down-regulated by OS in both MAE-WT and 

MAE-p47 by microarray analysis and qPCR as well as in both iMAE-WT and iMAE-p47 

by qPCR and Western blot.  

Microarray analysis identified genes involved in oxidation and the oxidant 

response, shown in Table 5.5.  Some interesting genes include lysyl oxidase (Lox) and 

NQO1.  Lysyl oxidase is an enzyme that helps the cross-link collagen fibers.  It has been 

reported to be induced by laminar shear stress and downregulated by high LDL levels, 

implicating a possible protective role in cardiovascular disease. [93, 94]  While its shear 

response is known, its possible regulation by p47phox-based NADPH oxidases is unique 

and warrants further study.  NQO1 is a cytosolic flavoenzyme that is classified as a 

detoxification enzyme. [95]  This gene is known to have an antioxidant response element 

(ARE) in its promoter region.  Its expression was downregulated by 0.39-fold in MAE-

p47 while its expression tended to increase, but not significantly, in MAE-WT.   

Gene ontology resources also helped identify genes in our analysis that are 

involved in cell adhesion.  Some of these genes were regulated similarly in both cell 

types, suggesting that they are not sensitive to the p47phox-based NADPH oxidases.  

However, several genes, including Jam2 and Alcam, appear to be regulated differently 

among the two cell types suggesting that they are sensitive to the p47phox-based 

NADPH oxidases to some extent.  These genes may play critical roles in endothelial 

permeability or monocyte adhesion to endothelial cells under shear stress conditions.  

Jam2 is a component of tight junctions in endothelial cells and may help regulate 

transendothelial migration of leukocytes. [96, 97]  We were able to verify by PCR in an 

immortalized cell line that it was down-regulated by OS in iMAE-WT but did not change 

in response to shear in iMAE-p47.   Further studies at the protein level and in vivo must 
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be conducted before any further conclusions are drawn.  Nonetheless, this is the first 

report that it is a shear-sensitive gene and that its shear response is p47phox-dependent. 

We have shown previously that Bmp4 is a mechanosensitive gene. [47, 54, 98]  

We unexpectedly did not see Bmp4 mRNA levels changing in response to OS in our 

microarray analysis.  We confirmed this by quantitative PCR in both primary and 

immortalized MAEC, which can be seen in Figure 4.15(a).  However, Bmp4 protein 

levels were shear-responsive.  As shown in Figure 4.15(b), OS up-regulated the mature 

form of Bmp4 in iMAE-WT.  OS had no effect on the mature form of Bmp4 in iMAE-

p47, indicating that its shear response may be p47phox-dependent.  We examined this 

gene even further using an in vivo partial ligation model.  In this model, the external 

carotid, internal carotid, and occipital arteries are ligated on the left side only, leaving the 

superior thyroid artery patent.  The ligation decreases flow, and hence shear, on the left 

side and increases flow, and hence shear, on the right side.  With this model, we see 

increased Bmp4 expression on the ligated, or low-flow, side one day following ligation.  

This was true only in wild-type mice.  There was no change in Bmp4 expression after 

ligation of p47phox-/- mice.  This corroborates our in vitro data, showing that Bmp4’s 

shear response is p47phox-dependent.  These are early results and warrant further 

investigation. 

An interesting observation with our microarray analysis was that more genes were 

shear-responsive in MAE-p47 than in MAE-WT.  Figure 4.9 summarizes the number of 

genes changing in response to shear in both cell types; almost twice as many genes 

change in MAE-p47 than in MAE-WT.  While this difference may be due to a technical 

bias from the arrays themselves or analysis or due to difference in cell purities, it may 

also indicate a significant impact of p47phox on overall transcription.  While speculative, 

it may be that p47phox participates on some level in deacetylation of histones or 

transcription factors, inhibiting DNA transcription. [99]  This is a very interesting 

hypothesis which warrants further investigation.  
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In summary, we have identified several genes that are sensitive to both shear and 

the p47phox-based NADPH oxidases.  Future studies, identifying the functional roles of 

unexpected genes could provide important novel clues into the understanding of 

mechanotransduction as well as the atherogenic mechanisms regulated by shear stress 

and reactive oxygen species. 
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CHAPTER FIVE: 

DISCUSSION AND FUTURE DIRECTIONS 

 

Atherosclerosis occurs preferentially at branches and curves in arteries exposed to 

disturbed flow while sparing straight portions of arteries exposed to undisturbed flow.  In 

vivo and in vitro studies have implicated NADPH oxidases in atherosclerosis and 

hypertension.  Shear stress stimulates ROS production in endothelial cells from a variety 

of sources, including NADPH oxidases which are regulated in part by the p47phox 

subunit.  Studies have shown that this regulatory subunit, in particular, is critical in the 

development of atherosclerosis as well as vessel remodeling and hypertension. [35, 38, 

40, 48]  Here, we examined the hypothesis that unidirectional laminar shear (LS) and 

ocillatory shear (OS) would differentially regulate gene expression profiles in p47phox-

dependent and -independent manners, and that these genes would provide novel 

molecular targets in understanding endothelial cell biology and vascular disease.   

The p47phox subunit of the NADPH oxidase can act as an important regulator of 

certain Nox isoforms, including Nox1 and Nox2 which may be responsible for shear-

induced superoxide production.  In order to isolate p47phox-dependent shear responses, 

we took advantage of the p47phox-/- transgenic mouse model which lacks a functional 

p47phox subunit.  We developed a method to isolate murine aortic endothelial cells using 

enzymatic digestion and cell sorting.  These cells were characterized as expressing 

typical endothelial markers, including VE-cadherin, PECAM1, and eNOS, and aligning 

in the direction of flow.  This was a challenging project since the initial cell yield is low 

and the cells do not readily proliferate in culture.  There is still room for investigation 

into how to optimally culture and expand these cells for experimental use.   Nonetheless, 

we successfully isolated small populations of primary murine aortic endothelial cells 

from both wild-type C57BL/6 mice (MAE-WT) and p47phox-/- mice (MAE-p47).  
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Furthermore, we were able to establish an immortalized cell line from each of these cell 

types, iMAE-WT and iMAE-p47.   

We carried out microarray studies using Affymetrix Mouse Genome 430 2.0 

Arrays with almost 40,000 transcripts on MAE-WT and MAE-p47 that were exposed to 

atheroprotective LS or atherogenic OS for 24 hours.  In comparison to LS, OS 

significantly changed the expression of 187 and 298 genes in MAE-WT and MAE-p47, 

respectively.  Of those, 23 genes showed similar gene expression patterns in both cell 

types while 462 genes showed different gene expression patterns in the two cell types, 

demonstrating a considerable role for p47phox-based NADPH oxidases in shear-

dependent gene expression.   

Microarray analysis identified a large group of genes whose shear response is 

potentially regulated by p47phox, either through ROS production via the NADPH 

oxidases it regulates or through other, heretofore unidentified intracellular protein 

interactions.  This large data set is simply the beginning of numerous investigations as 

each of these targets may be involved in the advancement of or protection from 

cardiovascular disease.  Changes in expression of several genes, including Klf2, Jam2, 

and eNOS, were confirmed by quantitative PCR and/or immunoblotting using both 

primary cells and immortalized cells.  Jam2 is particular novel since this is the first report 

to demonstrate its shear sensitivity as well as its p47phox-dependent shear response.  

Jam2 is an adhesion molecule involved in tight junctions between endothelial cells that 

may play a role in transendothelial leukocyte migration.  While this has been studied in 

the context of venous endothelial cells, it is possible that it also functions in arterial 

endothelial cells.  Since subintimal migration of monocytes is one of the first key steps in 

atherogenesis, and this occurs largely in areas of unsteady, oscillating shear stress, Jam2 

would be an interesting target to continue studying. 
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Taken together, our studies have identified a set of shear- and p47phox-sensitive 

genes, including unexpected and novel targets, that may play critical roles in vascular cell 

biology and pathobiology. 
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